login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214293 a(n) = 1 if n is a square, -1 if n is five times a square, 0 if n < 1. 1
1, 0, 0, 1, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

S. Cooper and M. Hirschhorn, On some infinite product identities, Rocky Mountain J. Math., 31 (2001) 131-139. see p. 134 Theorem 4.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of (phi(q) - phi(q^5)) / 2 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Sep 24 2013

Expansion of q * f(q^3, q^7) * f(-q^4, -q^16) / f(-q^8, -q^12) in powers of q where f() is Ramanujan's two-variable theta function.

Expansion of q * f(x, x^9) * f(-q, -q^4) / f(-q^2, -q^3) in powers of q where f() is Ramanujan's two-variable theta function. - Michael Somos, Sep 24 2013

Euler transform of period 20 sequence [ 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, 1, 1, -1, 0, -1, 1, 0, 0, -1, ...].

Multiplicative with a(5^e) = (-1)^e, a(p^e) = 1 if e even, 0 otherwise.

G.f.: (theta_3(q) - theta_3(q^5)) / 2 = Sum_{k>0} x^(k^2) - x^(5*k^2).

Dirichlet g.f.: zeta(2*s) * (1 - 5^-s).

a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = a(n). a(5*n) = -a(n).

a(4*n) = A214293(n). a(4*n+1) = A214960(n). - Michael Somos, Sep 24 2013

EXAMPLE

G.f. = q + q^4 - q^5 + q^9 + q^16 - q^20 + q^25 + q^36 - q^45 + q^49 + q^64 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^5]) / 2,  {q, 0, n}];

a[ n_] := If[ n < 0, 0, Boole[ OddQ [ Length @ Divisors @ n]] - Boole[ OddQ [ Length @ Divisors [5 n]]]];

PROG

(PARI) {a(n) = issquare(n) - issquare(5*n)};

(PARI) {a(n) = if( n<1, 0, direuler( p=2, n, if( p==5, 1 - X, 1) / (1 - X^2 ))[n])};

(MAGMA) Basis( ModularForms( Gamma1(20), 1/2), 65) [2]; /* Michael Somos, Jul 01 2014 */

CROSSREFS

Cf. A214284, A214293, A214960.

Sequence in context: A104105 A143221 A126999 * A120527 A071004 A102560

Adjacent sequences:  A214290 A214291 A214292 * A214294 A214295 A214296

KEYWORD

sign,mult

AUTHOR

Michael Somos, Jul 10 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 07:00 EDT 2018. Contains 316307 sequences. (Running on oeis4.)