This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214286 a(n) = floor(Fibonacci(n)/7). 1
 0, 0, 0, 0, 0, 0, 1, 1, 3, 4, 7, 12, 20, 33, 53, 87, 141, 228, 369, 597, 966, 1563, 2530, 4093, 6624, 10717, 17341, 28059, 45401, 73461, 118862, 192324, 311187, 503511, 814698, 1318209, 2132907, 3451116, 5584024, 9035140, 14619165 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1). FORMULA G.f.: x^6*(1+x^2+x^5+x^6+x^7+x^9+x^10) / ( (1-x-x^2)*(1-x^16) ). - R. J. Mathar, Jul 14 2012 a(n) = (A000045(n) - A105870(n))/7. - R. J. Mathar, Jul 14 2012 MATHEMATICA Floor[Fibonacci[Range[0, 40]]/7] (* modified by G. C. Greubel, May 22 2019 *) PROG (MAGMA) [Floor(Fibonacci(n)/7): n in [0..40]]; (PARI) vector(40, n, n--; fibonacci(n)\7 ) \\ G. C. Greubel, May 22 2019 (Sage) [floor(fibonacci(n)/7) for n in (0..40)] # G. C. Greubel, May 22 2019 CROSSREFS Cf. A004695-A004699. Sequence in context: A025047 A050342 A293642 * A108700 A325851 A062202 Adjacent sequences:  A214283 A214284 A214285 * A214287 A214288 A214289 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Jul 10 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 19:27 EST 2019. Contains 329987 sequences. (Running on oeis4.)