login
Expansion of f(x^1, x^7) in powers of x where f() is Ramanujan's general theta function.
10

%I #38 Jan 13 2024 03:32:55

%S 1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,

%T 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

%U 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0

%N Expansion of f(x^1, x^7) in powers of x where f() is Ramanujan's general theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C Characteristic function of A074377: a(n) = 1 if and only if n is in A074377.

%H Seiichi Manyama, <a href="/A214263/b214263.txt">Table of n, a(n) for n = 0..10000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>, 2019.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>.

%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>.

%F Euler transform of period 16 sequence [ 1, -1, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, -1, 1, -1, ...].

%F G.f.: f(x, x^7) = sum_{k in Z} x^(4*k^2 - 3*k).

%F a(n) = A010054(2*n + 1) = A115359(2*n).

%F Sum_{k=1..n} a(k) ~ sqrt(n). - _Amiram Eldar_, Jan 13 2024

%e G.f. = 1 + x + x^7 + x^10 + x^22 + x^27 + x^45 + x^52 + x^76 + x^85 + x^115 + ...

%e G.f. = q^9 + q^25 + q^121 + q^169 + q^361 + q^441 + q^729 + q^841 + q^1225 + ...

%t f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; Table[SeriesCoefficient[f[q, q^7], {q, 0, n}], {n, 0, 50}] (* _G. C. Greubel_, Oct 05 2017 *)

%o (PARI) {a(n) = issquare(16*n + 9)};

%Y Cf. A047621, A074377, A115359.

%Y A000122, A080995, A010054, A133100, A089801 have g.f. of f(x,x^k) for k=1..5.

%Y Cf. A000122, A000700, A121373.

%K nonn,easy

%O 0,1

%A _Michael Somos_ and _Omar E. Pol_, Jul 09 2012