login
Triangle T(n,k) by rows: the k-th derivative of the Fibonacci Polynomial F_n(x) evaluated at x=1.
3

%I #22 Sep 20 2021 09:28:15

%S 0,1,0,1,1,0,2,2,2,0,3,5,6,6,0,5,10,18,24,24,0,8,20,44,84,120,120,0,

%T 13,38,102,240,480,720,720,0,21,71,222,630,1560,3240,5040,5040,0,34,

%U 130,466,1536,4560,11760,25200,40320,40320,0,55,235,948,3564,12264

%N Triangle T(n,k) by rows: the k-th derivative of the Fibonacci Polynomial F_n(x) evaluated at x=1.

%C T(n,0) = A000045(n), Fibonacci numbers;

%C T(n,1) = A001629(n) for n > 0;

%C T(n,n-3) = A038720(n-2) for n > 2;

%C T(n,n-2) = A000142(n-1) for n > 1;

%C T(n,n-1) = A000142(n-1) for n > 0;

%C T(n,n) = 0.

%H Reinhard Zumkeller, <a href="/A214178/b214178.txt">Rows n = 0..150 of triangle, flattened</a>

%H P. Filipponi, A. F. Horadam, <a href="http://www.fq.math.ca/31-3.html">Second derivative sequences of Fibonacci and Lucas Polynomials</a>, Fib. Quart. 31 (1993), 194-204.

%F T(n,k) = A037027(n,k)*k!, 0 <= k < n; T(n,n) = 0.

%e The triangle begins:

%e . 0: [0]

%e . 1: [1, 0]

%e . 2: [1, 1, 0]

%e . 3: [2, 2, 2, 0]

%e . 4: [3, 5, 6, 6, 0]

%e . 5: [5, 10, 18, 24, 24, 0]

%e . 6: [8, 20, 44, 84, 120, 120, 0]

%e . 7: [13, 38, 102, 240, 480, 720, 720, 0]

%e . 8: [21, 71, 222, 630, 1560, 3240, 5040, 5040, 0]

%e . 9: [34, 130, 466, 1536, 4560, 11760, 25200, 40320, 40320, 0]

%e . 10: [55, 235, 948, 3564, 12264, 37800, 100800, 221760, 362880, 362880, 0]

%e ...

%t T[n_, k_] := D[Fibonacci[n, x], {x, k}] /. x -> 1;

%t Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Sep 20 2021 *)

%o (Haskell)

%o a214178 n k = a214178_tabl !! n !! k

%o a214178_row n = a214178_tabl !! n

%o a214178_tabl = [0] : map f a037027_tabl where

%o f row = (zipWith (*) a000142_list row) ++ [0]

%Y Cf. A000142, A037027.

%K nonn,tabl

%O 0,7

%A _R. J. Mathar_, _L. Edson Jeffery_, _Reinhard Zumkeller_, Jul 07 2012