%I #24 Jun 02 2022 16:48:48
%S 7,17,157,283,20023,20023,6446437,14382547,122862737,12925003913,
%T 625586209427,761375971073,92757861866387,15447055149567577,
%U 192604162645538927,192604162645538927,724012906264106939197,2667069644892918607163,235168333030918497994787
%N Least prime p such that the factorization of p^2-9 contains n consecutive primes beginning with prime(3)=5.
%C We consider prime-smoothness for primes >=5, because primes p>3 are not divisible by 3, and so p-3 and p+3 are not divisible by 3.
%H Chai Wah Wu, <a href="/A214149/b214149.txt">Table of n, a(n) for n = 1..29</a>
%e 20020 = 2^2*5*7*11*13, 20026 = 2*17*19*31; 20023^2-9 contains 6 all-consecutive primes beginning with 5.
%e 6446437^2-9 = 2^4*5*7^2*11*13*17^2*19*23*587 contains 7 all-consecutive primes, the first one being 5.
%o (PARI) A214149(n)={ local(a, k=1, p) ; a=prod(j=3, n+2, prime(j)) ; while(1, if( issquare(k*a+9), p=sqrtint(k*a+9) ; if(isprime(p),return(p); ) ; ) ; k++ ; ) }
%o (Python)
%o from itertools import product
%o from sympy import isprime, sieve, prime
%o from sympy.ntheory.modular import crt
%o def A214149(n): return 7 if n == 1 else int(min(filter(lambda n: n > 3 and isprime(n),(crt(tuple(sieve.primerange(5,prime(n+2)+1)), t)[0] for t in product((3,-3),repeat=n))))) # _Chai Wah Wu_, Jun 01 2022
%Y Cf. A214089, A214150.
%K nonn
%O 1,1
%A _Robin Garcia_, Jul 05 2012
%E More terms from _Max Alekseyev_, Aug 22 2012