The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214089 Least prime p such that the first n primes divide p^2-1. 7
 3, 5, 11, 29, 419, 1429, 1429, 315589, 1729001, 57762431, 1724478911, 6188402219, 349152569039, 1430083494841, 390499187164241, 1010518715554349, 18628320726623609, 522124211958421799, 522124211958421799, 5936798290039408015951, 311263131154464891496249 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS (a(n)^2 - 1) / A002110(n) is congruent to 0 (mod 4). (a(n)^2 - 1) / (4*A002110(n)) = A215085(n). [J. Stauduhar, Aug 03 2012] a(n) == +1 or -1 (mod prime(i)) for every i=1,2,...,n. The system of congruences x == +1 or -1 (mod prime(i)), i=1,2,...,n, has 2^(n-1) solutions modulo A002110(n) so that a(n) represents the smallest prime in the corresponding residue classes, allowing efficient computation (see PARI program). - Max Alekseyev, Aug 22 2012 LINKS Max Alekseyev, Table of n, a(n) for n = 1..32 EXAMPLE a(5) = 419: 419^2-1 = 175560 = 2^3*3*5*7*11*19 contains the first 5 primes. a(7) = 1429:  1428=2^2*3*7*17, 1430=2*5*11*13 contains the first 7 primes. a(8) = 315589: 315589^2-1 = 2^3*3*5*7*11*13*17^2*19*151 contains the first 8 primes. MAPLE A214089 := proc(n)      local m, k, p;    m:= 2*mul(ithprime(j), j=1..n);    for k from 1 do      p:= sqrt(m*k+1);      if type(p, integer) and isprime(p) then return(p)      end if    end do end proc; # Robert Israel, Aug 19 2012 MATHEMATICA f[n_] := Block[{k = 1, p = Times @@ Prime@Range@n}, While[! IntegerQ@Sqrt[4 k*p + 1], k++]; Block[{j = k}, While[! PrimeQ[Sqrt[4 j*p + 1]], j++]; Sqrt[4 j*p + 1]]]; Array[f, 10] (* J. Stauduhar, Aug 18 2012 *) PROG (PARI) A214089(n) = {         local(a, k=4, p) ;         a=prod(j=1, n, prime(j)) ;         while(1,                 if( issquare(k*a+1, &p),                         if(isprime(p),                                 return(p);                         ) ;                 ) ;                 k+=4;         ) ; } ; (PARI) { a(n) = local(B, q); B=prod(i=1, n, prime(i))^2; forvec(v=vector(n-1, i, [0, 1]), q=chinese(concat(vector(n-1, i, Mod((-1)^v[i], prime(i+1))), [Mod(1, 2)])); forstep(s=lift(q), B-1, q.mod, if(ispseudoprime(s), B=s; break)) ); B } /* Max Alekseyev */ CROSSREFS Cf. A073917, A103783. Sequence in context: A265784 A146243 A262936 * A108259 A093933 A165572 Adjacent sequences:  A214086 A214087 A214088 * A214090 A214091 A214092 KEYWORD nonn,hard AUTHOR Robin Garcia, Jul 02 2012 EXTENSIONS a(15)-a(16) from Donovan Johnson, Jul 25 2012 a(17) from Charles R Greathouse IV, Aug 08 2012 a(18) from Charles R Greathouse IV, Aug 16 2012 a(19) from J. Stauduhar, Aug 18 2012 a(20)-a(32) from Max Alekseyev, Aug 22 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 12:51 EST 2020. Contains 338947 sequences. (Running on oeis4.)