This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214031 Fixed points of A214030. 4
 13, 19, 23, 37, 41, 47, 89, 139, 157, 211, 277, 281, 331, 373, 379, 397, 499, 503, 521, 571, 613, 619, 641, 647, 691, 733, 739, 743, 757, 761, 811, 853, 859, 863, 877, 983, 997, 1051, 1093, 1103, 1117, 1171, 1213, 1223, 1237, 1289, 1297, 1409, 1453, 1459, 1481, 1487 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This sequence is to A214030 as A000057 is to A001177. It would be nice to have an interpretation of this sequence akin to the interpretation of A000057 as the set of primes which divide all Fibonacci sequences, having arbitrary initial values for a(1),a(2). The linearly recursive sequence which seems to be associated to this is 3*f(n) = 6*f(n-1) + 2*f(n-2), but this does not have integral values. If we use the sequence 3,2,3,2,3,2,... instead of 2,3,2,3,... we end up with the same sequence a(n). LINKS FORMULA {n: A214030(n)=n}. PROG (PARI) {b23(n)=local(t, m=1, s=[n]); if (n<2, 0, while(1, if(m%2, s=concat(s, 2), s=concat(s, 3)); t=contfracpnqn(concat(s, n)); t=contfrac(n*t[1, 1]/t[2, 1]); if(t[1]

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 14:38 EST 2019. Contains 329865 sequences. (Running on oeis4.)