login
A214019
a(n) is the smallest positive number such that n divides the sum of all numbers formed by cyclically permuting digits of a(n).
0
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333, 370, 407, 444, 481, 518, 555, 592, 629, 666, 777, 888, 999, 1111, 1818, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999, 11111, 22222, 33333, 44444, 55555, 66666, 77777, 88888, 99999
OFFSET
1,2
COMMENTS
Many terms in this sequence are the same as A160818(n) but not all.
EXAMPLE
For example with 481: 481 + 814 + 148 = 1443 and 481 divides 1443.
MATHEMATICA
lst = {}; cycDigitPerms[n_Integer, b_: 10] := Module[{list = {n}, digits = IntegerDigits[n, b], len, counter, holder, next}, len = Length[digits]; counter = 1; While[counter < len, holder = digits[[-1]]; digits = Drop[digits, -1]; digits = Insert[digits, holder, 1]; list = Append[list, FromDigits[digits, b]]; counter++]; Return[list]]; Do[If[Divisible[Total@cycDigitPerms[n], n], AppendTo[lst, n]], {n, 10^5}]; lst (* Most of the code is from Alonso del Arte *)
CROSSREFS
Cf. A160818.
Sequence in context: A227001 A248954 A082937 * A160818 A244514 A082810
KEYWORD
base,nonn
AUTHOR
STATUS
approved