login
A213967
a(n)=n for n<=3; thereafter a(n)=a(n-1)+a(n-2)+a(n-3)+1.
3
0, 1, 2, 3, 7, 13, 24, 45, 83, 153, 282, 519, 955, 1757, 3232, 5945, 10935, 20113, 36994, 68043, 125151, 230189, 423384, 778725, 1432299, 2634409, 4845434, 8912143, 16391987, 30149565, 55453696, 101995249, 187598511, 345047457, 634641218, 1167287187
OFFSET
0,3
REFERENCES
Atanassov, K. T.; Atanassova, V.; Shannon, A. G.; Turner, J. C. New visual perspectives on Fibonacci numbers. With a foreword by A. F. Horadam. World Scientific Publishing Co., Inc., River Edge, NJ, 2002. xvi+313 pp. ISBN: 981-238-134-1 MR1932564 (2003h:11015). See p. 68.
FORMULA
G.f.: x*(1-x^2+x^3)/(1-2*x+x^4). - Bruno Berselli, Jul 02 2012
MAPLE
f:=proc(n) option remember; if n <= 3 then n else f(n-1)+f(n-2)+f(n-3)+1; fi; end:
seq(f(n), n=0..60);
MATHEMATICA
Join[{0}, LinearRecurrence[{2, 0, 0, -1}, {1, 2, 3, 7}, 40]] (* Jean-François Alcover, Feb 13 2018 *)
nxt[{a_, b_, c_}]:={b, c, a+b+c+1}; Join[{0}, NestList[nxt, {1, 2, 3}, 40][[All, 1]]] (* Harvey P. Dale, Sep 07 2020 *)
PROG
(Magma) [n le 3 select n else Self(n)+Self(n-1)+Self(n-2)+1: n in [0..35]]; // Bruno Berselli, Jul 02 2012
(Haskell)
a213967 n = a213967_list !! n
a213967_list = 0 : xs where
xs = 1 : 2 : 3 : map (+ 1)
(zipWith3 (((+) .) . (+)) xs (tail xs) (drop 2 xs))
-- Reinhard Zumkeller, Dec 29 2014
CROSSREFS
Cf. A001590.
Cf. A248098.
Sequence in context: A330028 A075058 A213968 * A128695 A024504 A256494
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 30 2012
STATUS
approved