login
A213953
Triangle by rows, inverse of A208891.
1
1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 1, 1, -2, -1, 1, -2, 5, 0, -3, -1, 1, -9, 5, 10, -2, -4, -1, 1, -9, -21, 25, 15, -5, -5, -1, 1, 50, -105, -11, 62, 19, -9, -6, -1, 1, 267, -141, -301, 56, 119, 21, -14, -7, -1, 1, 413, 777
OFFSET
0,13
FORMULA
Inverse of triangle A208891, Pascal's triangle matrix with an appended right border of 1's.
EXAMPLE
Triangle starts:
1;
-1, 1
0, -1, 1
1, -1, -1, 1;
1, 1, -2, -1, 1;
-2, 5, 0, -3, -1, 1;
-9, 5, 10, -2, -4, -1, 1;
-9, -21, 25, 15, -5, -5, -1, 1;
50, -105, -11, 62, 19, -9, -6, -1, 1;
267, -141, -301, 56, 119, 21, -14, -7, -1, 1;
413, 777, -1040, -566, 226, 198, 20, -20, -8, -1, 1;
...
MAPLE
A208891 := proc(n, k)
if n <0 or k<0 or k>n then
0;
elif n = k then
1 ;
else
binomial(n-1, k) ;
end if;
end proc:
A259456 := proc(n)
local A, row, col ;
A := Matrix(n, n) ;
for row from 1 to n do
for col from 1 to n do
A[row, col] := A208891(row-1, col-1) ;
end do:
end do:
LinearAlgebra[MatrixInverse](A) ;
end proc:
A259456(20) ; # R. J. Mathar, Jul 21 2015
CROSSREFS
Cf. A208891, A000587 (first column), A014619 (2nd column), A080956 (4th subdiagonal).
Sequence in context: A153914 A151893 A326566 * A000361 A246596 A135723
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Jun 26 2012
STATUS
approved