OFFSET
1,1
COMMENTS
Smallest k such that sigma(k) = n * m^q where m, q >= 2.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..5000
EXAMPLE
a(34) = 201 because sigma(201) = 272 = 34*2^3.
MAPLE
with(numtheory):
a:= proc(n) local k, q;
for k while irem(sigma(k), n, 'q')>0 or
igcd(map(i->i[2], ifactors(q)[2])[])<2 do od; k
end:
seq(a(n), n=1..100); # Alois P. Heinz, Jun 26 2012
MATHEMATICA
a[n_] := Module[{k, q, r}, For[k = 1, {q, r} = QuotientRemainder[ DivisorSigma[1, k], n]; r>0 || GCD @@ FactorInteger[q][[All, 2]]<2, k++]; k];
Array[a, 100] (* Jean-François Alcover, Nov 21 2020, after Alois P. Heinz *)
PROG
(PARI) a(n)=my(k); while(sigma(k++)%n || !ispower(sigma(k)/n), ); k \\ Charles R Greathouse IV, Jun 26 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jun 25 2012
STATUS
approved