login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213898 Fixed points of a sequence h(n) defined by the minimum number of 9's in the relation n*[n,9,9,...,9,n] = [x,...,x] between simple continued fractions. 4
2, 11, 31, 43, 47, 67, 79, 103, 127, 199, 211, 223, 263, 307, 311, 383, 431, 439, 463, 467, 499, 523, 563, 571, 587, 691, 719, 751, 811, 839, 863, 883, 911, 967, 991, 1051, 1063, 1087, 1091, 1123, 1151, 1231, 1307, 1327, 1399, 1447, 1451, 1459, 1483, 1499 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

In a variant of A213891, multiply n by a number with simple continued fraction [n,9,9,..,9,n] and increase the number of 9's until the continued fraction of the product has the same first and last entry (called x in the NAME). Examples are

2 * [2, 9, 9, 2] = [4, 4, 1, 1, 4, 4],

3 * [3, 9, 3] = [9, 3, 9],

4 * [4, 9, 9, 9, 9, 9, 4] = [16, 2, 3, 1, 1, 1, 1, 8, 1, 1, 1, 1, 3, 2, 16] ,

5 * [5, 9, 9, 9, 9, 5] = [25, 1, 1, 4, 1, 1, 1, 1, 1, 1, 4, 1, 1, 25],

6 * [6, 9, 9, 9, 9, 9, 6] = [36, 1, 1, 1, 13, 6, 13, 1, 1, 1, 36],

7 * [7, 9, 9, 9, 9, 9, 7] = [49, 1, 3, 3, 6, 1, 6, 3, 3, 1, 49].

The number of 9's needed defines the sequence h(n) = 2, 1,5, 4, 5, 5, 5, 1, 14,...  (n>=2).

The current sequence contains the fixed points of h, i. e., those n where h(n)=n.

We conjecture that this sequence contains prime numbers analogous to the sequence of prime numbers A000057, in the sense that, instead of referring to the fibonacci sequence (sequences satisfying f(n)=f(n-1)+f(n-2) with arbitrary positive integer values for f(1) and f(2)) it refers to the sequences satisfying f(n)=9*f(n-1)+f(n-2) like A099371, A015455 etc. This would mean that a prime is in the sequence A213898 if and only if it divides some term in each of the sequences satisfying f(n)=9*f(n-1)+f(n-2).

LINKS

Table of n, a(n) for n=1..50.

MATHEMATICA

f[m_, n_] := Block[{c, k = 1}, c[x_, y_] := ContinuedFraction[x FromContinuedFraction[Join[{x}, Table[m, {y}], {x}]]]; While[First@ c[n, k] != Last@ c[n, k], k++]; k]; Select[Range[2, 1000], f[9, #] == # &] (* Michael De Vlieger, Sep 16 2015 *)

PROG

(PARI)

{a(n) = local(t, m=1); if( n<2, 0, while( 1,

   t = contfracpnqn( concat([n, vector(m, i, 9), n]));

   t = contfrac(n*t[1, 1]/t[2, 1]);

   if(t[1]<n^2 || t[#t]<n^2, m++, break));

m)};

for(k=1, 1500, if(k==a(k), print1(a(k), ", ")));

CROSSREFS

Cf. A213358; A000057, A213891 - A213897, A213899, A261311.

Cf. A213648, A262212 - A262220, A213900, A262211.

Sequence in context: A187830 A115058 A158295 * A085041 A197642 A121346

Adjacent sequences:  A213895 A213896 A213897 * A213899 A213900 A213901

KEYWORD

nonn

AUTHOR

Art DuPre, Jun 24 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 23:44 EST 2019. Contains 329945 sequences. (Running on oeis4.)