login
A213852
Least m>0 such that n+1+m and n-m are relatively prime.
1
2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 5, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1
OFFSET
1,1
COMMENTS
a(n) > 1 for n == 1 mod 3, a(n) > 2 for n == 7 mod 15, a(n) > 3 for n == 52 mod 105, a(n) > 5 for n == 577 mod 1155, and so on, see A070826. - Ralf Stephan, Mar 16 2014
It appears that we get this sequence if we bisect A071222 and then divide by 2. - N. J. A. Sloane, May 17 2019
LINKS
EXAMPLE
gcd(9,6) = 3, gcd(10,5) = 5, gcd(11,4) = 1, so that a(7) = 3.
MATHEMATICA
Table[m = 1; While[GCD[n+1+m, n-m] != 1, m++]; m, {n, 1, 140}]
CROSSREFS
Sequence in context: A226304 A101022 A241153 * A051064 A280509 A153096
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 26 2012
STATUS
approved