login
A213817
Numbers n with the property that cyclically right-shifting by 2 positions divides n by 9 (leading 0's omitted).
1
197802, 296703, 395604, 494505, 593406, 692307, 791208, 890109, 989010, 197802197802, 296703296703, 395604395604, 494505494505, 593406593406, 692307692307, 791208791208, 890109890109, 989010989010, 197802197802197802, 296703296703296703, 395604395604395604
OFFSET
1,1
LINKS
FORMULA
a(n) = 9/91*(2+((n-1) mod 9))*(10^(6*floor((n+8)/9))-1). - Alois P. Heinz, Jun 28 2012
EXAMPLE
197802 belongs to this sequence, since 21978 is obtained by moving the two least significant digits "02" to the front and 197802/9 = 21978.
MAPLE
a:= proc(n) local h;
9/91*(2+irem(n-1, 9, 'h'))*(10^(6*(h+1))-1)
end:
seq (a(n), n=1..30); # Alois P. Heinz, Jun 28 2012
MATHEMATICA
lst = {}; Do[d = IntegerDigits[n]; m = FromDigits@Take[d, -2]*10^(IntegerLength[n] - 2) + FromDigits@Drop[d, -2]; If[n/9 == m, AppendTo[lst, n]], {n, 18, 10^6, 9}]; lst
CROSSREFS
Sequence in context: A345659 A344942 A344943 * A215996 A205234 A345660
KEYWORD
base,nonn
AUTHOR
EXTENSIONS
More terms from Alois P. Heinz, Jun 28 2012
STATUS
approved