login
Rectangular array: (row n) = b**c, where b(h) = F(h), c(h) = F(h+1), F=A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.
3

%I #13 Jul 10 2019 08:22:26

%S 1,3,2,7,5,3,15,12,8,5,30,25,19,13,8,58,50,40,31,21,13,109,96,80,65,

%T 50,34,21,201,180,154,130,105,81,55,34,365,331,289,250,210,170,131,89,

%U 55,655,600,532,469,404,340,275,212,144,89,1164,1075,965,863

%N Rectangular array: (row n) = b**c, where b(h) = F(h), c(h) = F(h+1), F=A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.

%C Principal diagonal: A001870

%C Antidiagonal sums: A152881

%C row 1, (1,1,2,3,5,8,...)**(1,2,3,5,8,13,...): A023610(k-1)

%C row 2, (1,1,2,3,5,8,...)**(2,3,5,8,13,21,...): A067331(k-1)

%C row 3, (1,1,2,3,5,8,...)**(3,5,8,13,21,34,...)

%C For a guide to related arrays, see A213500.

%H Clark Kimberling, <a href="/A213777/b213777.txt">Antidiagonals n=1..80, flattened</a>

%F T(n,k) = 2*T(n,k-1) + T(n,k-2) - 2*T(n,k-3) - T(n,k-4).

%F G.f. for row n: f(x)/g(x), where f(x) = F(n-1) + F(n-2)*x and g(x) = (1 - x - x^2)^2.

%F T(n,k) = (k*Lucas(n+k+1) + Lucas(n)*Fibonacci(k))/5. - _Ehren Metcalfe_, Jul 10 2019

%e Northwest corner (the array is read by falling antidiagonals):

%e 1....3....7....15....30....58

%e 2....5....12...25....50....96

%e 3....8....19...40....80....154

%e 5....13...31...65....130...250

%e 8....21...50...105...210...404

%e 13...34...81...170...340...654

%t b[n_] := Fibonacci[n]; c[n_] := Fibonacci[n + 1];

%t t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]

%t TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]

%t Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]

%t r[n_] := Table[t[n, k], {k, 1, 60}] (* A213777 *)

%t Table[t[n, n], {n, 1, 40}] (* A001870 *)

%t s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]

%t Table[s[n], {n, 1, 50}] (* A152881 *)

%Y Cf. A213500.

%K nonn,tabl,easy

%O 1,2

%A _Clark Kimberling_, Jun 21 2012