%I #16 Jul 17 2017 00:43:37
%S 0,0,1,0,0,1,1,0,0,1,2,0,1,1,1,0,0,1,2,0,1,1,3,0,1,2,0,1,1,1,1,0,0,1,
%T 2,0,1,1,3,0,1,2,0,1,1,1,0,4,1,0,3,1,1,0,2,1,2,0,1,1,1,1,1,0,0,1,2,0,
%U 1,1,3,0,1,2,0,1,1,1,0,4,1,0,3,1,1,0,2
%N a(n)=0 if n is in the infinite trunk of Carl White's beanstalk (i.e., in A179016), otherwise 1 + number of steps to reach the farthest leaf in that finite branch of the beanstalk.
%H Antti Karttunen, <a href="/A213725/b213725.txt">Table of n, a(n) for n = 0..16384</a>
%F If A079559(n)=0, a(n)=1; otherwise, if A213719(n)=1, a(n)=0; otherwise a(n) = 1+max(a(A213723(n)), a(A213724(n))),
%o (Scheme with memoization-macro definec): (definec (A213725 n) (cond ((zero? (A079559 n)) 1) ((not (zero? (A213719 n))) 0) (else (1+ (max (A213725 (A213723 n)) (A213725 (A213724 n)))))))
%Y Differs from A213726 for the first time at n=208, where a(n)=5, while A213726(208)=6.
%Y For all n, a(A179016(n)) = 0, a(A055938(n)) = 1, and a(A213717(n)) >= 2. Cf. A213726, A213727-A213731.
%K nonn
%O 0,11
%A _Antti Karttunen_, Nov 01 2012