The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213661 Number of dominating subsets of the wheel graph W_n. 2
 4, 3, 7, 15, 27, 53, 103, 199, 387, 753, 1467, 2863, 5595, 10949, 21455, 42095, 82691, 162625, 320179, 631031, 1244907, 2458261, 4858487, 9610231, 19024131, 37687153, 74710123, 148198623, 294150331, 584167941, 1160734623, 2307488351, 4589261827 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) = Sum_{k=1..n} A212635(n,k). Extended to a(1)-a(3) using the formula/recurrence. LINKS S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251 [math.CO], 2009. T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks, Recurrence relations and splitting formulas for the domination polynomial, arXiv:1206.5926 [math.CO], 2012. Eric Weisstein's World of Mathematics, Dominating Set Eric Weisstein's World of Mathematics, Wheel Graph Index entries for linear recurrences with constant coefficients, signature (3,-1,-1,-2). FORMULA a(n) = a(n-1) + a(n-2) + a(n-3) + 2^(n-4) for n >= 4. G.f.: x*(4 - 9*x + 2*x^2 + x^3)/(1 - 3*x + x^2 + x^3 + 2*x^4). a(n) = 2^(n-1) -A000073(n+2)+4*A000073(n+1) -A000073(n). - R. J. Mathar, Jun 29 2012 a(n) = 3*a(n-1) - a(n-2) - a(n-3) - 2*a(n-4). - Eric W. Weisstein, Apr 17 2018 EXAMPLE a(4)=15 because all nonempty subsets of the wheel W_4 are dominating (2^4 - 1 = 15). MAPLE a[4] := 15: a[5] := 27: a[6] := 53: for n from 7 to 42 do a[n] := a[n-1]+a[n-2]+a[n-3]+2^(n-4) end do: seq(a[n], n = 4 .. 40); MATHEMATICA LinearRecurrence[{3, -1, -1, -2}, {4, 3, 7, 15}, 40] (* Eric W. Weisstein, Mar 31 2017 *) Table[2^(n - 1) + RootSum[-1 - # - #^2 + #^3 &, #^n (-1 - # + #1^2) &], {n, 20}] (* Eric W. Weisstein, Apr 17 2018 *) CoefficientList[Series[(4 - 9 x + 2 x^2 + x^3)/(1 - 3 x + x^2 + x^3 + 2 x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 17 2018 *) CROSSREFS Cf. A212635. Sequence in context: A245300 A228949 A048227 * A176083 A092193 A277117 Adjacent sequences:  A213658 A213659 A213660 * A213662 A213663 A213664 KEYWORD nonn,easy AUTHOR Emeric Deutsch, Jun 29 2012 EXTENSIONS a(1)-a(3) prepended by Eric W. Weisstein, Apr 17 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 07:14 EDT 2020. Contains 334747 sequences. (Running on oeis4.)