The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213643 E.g.f. satisfies: A(x) = x + A(x)^2*exp(A(x)). 9
 1, 2, 18, 252, 4940, 124350, 3823722, 138915560, 5822192952, 276522143130, 14677209803630, 860990013672492, 55315008281020644, 3862656545279925302, 291301089508829138130, 23595204076694940812880, 2042970533426395737658352, 188298566037963463789282482 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 FORMULA E.g.f.: A(x) = log(G(x)) where G(x) = exp(x*Catalan(x*G(x))) is the e.g.f. of A161629, and Catalan(x) = (1-sqrt(1-4*x))/(2*x). E.g.f.: Series_Reversion(x - x^2*exp(x)). E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) exp(n*x)*x^(2*n) / n!. E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) exp(n*x)*x^(2*n-1) / n! ). O.g.f.: Sum_{n>=0} (2*n)!/n! * x^(n+1) / (1 - n*x)^(2*n+1). a(n) = Sum_{k=0..n-1} k^(n-k-1)/(n-k-1)! * (n+k-1)!/k!. a(n) = n*A213644(n-1). Limit n->infinity (a(n)/n!)^(1/n) = r*(1+r)/(1-r) = 5.5854662015218413..., where r = 0.7603592340333989... is the root of the equation (1-r^2)/r^2 = exp((r-1)/r). - Vaclav Kotesovec, Jul 13 2013 a(n) ~ (1-r) * n^(n-1) * (r*(1+r)/(1-r))^n / (sqrt(r*(1+2*r-r^2))*exp(n)). - Vaclav Kotesovec, Dec 28 2013 EXAMPLE E.g.f.: A(x) = x + 2*x^2/2! + 18*x^3/3! + 252*x^4/4! + 4940*x^5/5! +... where A(x - x^2*exp(x)) = x and A(x) = x + A(x)^2*exp(A(x)). Related expansions: A(x)^2 = 2*x^2/2! + 12*x^3/3! + 168*x^4/4! + 3240*x^5/5! + 80880*x^6/6! +... A(x) = x*Catalan(x*G(x)) where G(x) = exp(A(x)): exp(A(x)) = 1 + x + 3*x^2/2! + 25*x^3/3! + 349*x^4/4! + 6821*x^5/5! + 171421*x^6/6! +..., which is the e.g.f. of A161629. A(x) = x + exp(x)*x^2 + d/dx exp(2*x)*x^4/2! + d^2/dx^2 exp(3*x)*x^6/3! + d^3/dx^3 exp(4*x)*x^8/4! +... log(A(x)/x) = exp(x)*x + d/dx exp(2*x)*x^3/2! + d^2/dx^2 exp(3*x)*x^5/3! + d^3/dx^3 exp(4*x)*x^7/4! +... Ordinary Generating Function: O.g.f.: x + 2*x^2 + 18*x^3 + 252*x^4 + 4940*x^5 + 124350*x^6 +... O.g.f.: x + 2*x^2/(1-x)^3 + 6*2!*x^3/(1-2*x)^5 + 20*3!*x^4/(1-3*x)^7 + 70*4!*x^5/(1-4*x)^9 + 252*5!*x^6/(1-5*x)^11 +...+ (2*n)!/n!*x^(n+1)/(1-n*x)^(2*n+1) +... MAPLE a:= n-> n!*coeff(series(RootOf(A=x+A^2*exp(A), A), x, n+1), x, n): seq(a(n), n=0..30); # Alois P. Heinz, Jul 18 2013 MATHEMATICA Flatten[{1, Table[Sum[k^(n-k-1)/(n-k-1)!*(n+k-1)!/k!, {k, 0, n-1}], {n, 2, 20}]}] (* Vaclav Kotesovec, Jul 13 2013 *) PROG (PARI) {a(n)=sum(k=0, n-1, k^(n-k-1)/(n-k-1)! * (n+k-1)!/k! )} (PARI) {a(n)=n!*polcoeff(serreverse(x-x^2*exp(x+x*O(x^n))), n)} for(n=1, 25, print1(a(n), ", ")) (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, exp(m*x+x*O(x^n))*x^(2*m)/m!)); n!*polcoeff(A, n)} (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, exp(m*x+x*O(x^n))*x^(2*m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)} (PARI) /* O.g.f.: */ {a(n)=polcoeff(sum(m=0, n, (2*m)!/m!*x^(m+1)/(1-m*x+x*O(x^n))^(2*m+1)), n)} CROSSREFS Cf. A213644, A161629, A200319, A215003. Sequence in context: A337775 A276364 A109517 * A143138 A151362 A215362 Adjacent sequences: A213640 A213641 A213642 * A213644 A213645 A213646 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 17 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 3 01:24 EST 2023. Contains 360024 sequences. (Running on oeis4.)