The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213641 E.g.f. satisfies: A(x) = 1 - log(1 - x^2*A(x)^2) / x. 3
 1, 1, 4, 33, 408, 6760, 140880, 3543120, 104469120, 3535037856, 135053291520, 5750579640960, 270067321117440, 13868724577593600, 773138898730598400, 46500352460941579200, 3001412657729335449600, 206946807350480534937600, 15180752044039172426035200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f. satisfies: A(x + log(1-x^2)) = x/(x + log(1-x^2)). E.g.f.: A(x) = (1/x)*Series_Reversion(x + log(1-x^2)). a(n) = A213640(n+1)/(n+1). EXAMPLE E.g.f.: A(x) = 1 + x + 4*x^2/2! + 33*x^3/3! + 408*x^4/4! + 6760*x^5/5! +... Related expansions: A(x)^2 = 1 + 2*x + 10*x^2/2! + 90*x^3/3! + 1176*x^4/4! + 20240*x^5/5! +... -log(1 - x^2*A(x)^2)/x = x + 4*x^2/2! + 33*x^3/3! + 408*x^4/4! +... A(x + log(1-x^2)) = 1 + x + 2*x^2/2! + 9*x^3/3! + 48*x^4/4! + 340*x^5/5! +... PROG (PARI) {a(n)=n!*polcoeff((1/x)*serreverse(x+log(1-x^2 +x^2*O(x^n))), n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A213640, A218653, A200320. Sequence in context: A331794 A156132 A215364 * A111534 A162655 A216135 Adjacent sequences:  A213638 A213639 A213640 * A213642 A213643 A213644 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 17 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 10:42 EDT 2020. Contains 334748 sequences. (Running on oeis4.)