OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/4) * eta(q^2)^2 * eta(q^4)^5 / (eta(q)^2 * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ 2, 0, 2, -5, 2, 0, 2, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(3/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A116597.
EXAMPLE
G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 4*x^4 + 4*x^5 + 7*x^6 + 2*x^7 + 8*x^8 + 10*x^9 + ...
G.f. = q + 2*q^5 + 3*q^9 + 6*q^13 + 4*q^17 + 4*q^21 + 7*q^25 + 2*q^29 + 8*q^33 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)]^2 EllipticTheta[ 3, 0, x^2] / (4 x^(1/4)), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^4 + A)^5 / (eta(x + A)^2 * eta(x^8 + A)^2), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 16 2012
STATUS
approved