login
A213622
Expansion of phi(x) * psi(x) * phi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
6
1, 3, 4, 7, 8, 4, 9, 8, 4, 16, 9, 8, 20, 8, 8, 11, 8, 12, 20, 20, 8, 15, 16, 12, 20, 16, 8, 24, 21, 8, 20, 8, 16, 28, 24, 8, 17, 32, 12, 36, 16, 8, 24, 16, 24, 19, 20, 20, 32, 16, 12, 28, 16, 20, 44, 27, 12, 36, 24, 16, 28, 24, 16, 28, 32, 12, 25, 32, 12, 48
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/8) * eta(q^2)^5 * eta(q^4)^3 / (eta(q)^3 * eta(q^8)^2), in powers of q.
Euler transform of period 8 sequence [ 3, -2, 3, -5, 3, -2, 3, -3, ...].
EXAMPLE
1 + 3*x + 4*x^2 + 7*x^3 + 8*x^4 + 4*x^5 + 9*x^6 + 8*x^7 + 4*x^8 + ...
q + 3*q^9 + 4*q^17 + 7*q^25 + 8*q^33 + 4*q^41 + 9*q^49 + 8*q^57 + 4*q^65 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/2 EllipticTheta[ 2, 0, q] EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^4], {q, 0, 2 n + 1/4}]; Table[a[n], {n, 0, 80}]
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^4 + A)^3 / (eta(x + A)^3 * eta(x^8 + A)^2), n))}
CROSSREFS
Sequence in context: A054058 A056007 A316973 * A246847 A193406 A104426
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 16 2012
STATUS
approved