login
Triangle read by rows, coefficients of the Euler polynomials E_{n}(x) times A006519(n+1) in descending order of powers.
0

%I #9 May 21 2013 08:49:53

%S 1,2,-1,1,-1,0,4,-6,0,1,1,-2,0,1,0,2,-5,0,5,0,-1,1,-3,0,5,0,-3,0,8,

%T -28,0,70,0,-84,0,17,1,-4,0,14,0,-28,0,17,0,2,-9,0,42,0,-126,0,153,0,

%U -31,1,-5,0,30,0,-126,0,255,0,-155,0,4,-22,0,165,0,-924

%N Triangle read by rows, coefficients of the Euler polynomials E_{n}(x) times A006519(n+1) in descending order of powers.

%e e(0,x) = 1,

%e e(1,x) = 2*x^1 - 1,

%e e(2,x) = x^2 - x^1,

%e e(3,x) = 4*x^3 - 6*x^2 + 1,

%e e(4,x) = x^4 - 2*x^3 + x^1,

%e e(5,x) = 2*x^5 - 5*x^4 + 5*x^2 - 1.

%p seq(seq(coeff(2^padic[ordp](i+1,2)*euler(i,x),x,i-j),j=0..i),i=0..11);

%t Table[ CoefficientList[ EulerE[n, x]*2^IntegerExponent[n+1, 2], x] // Reverse, {n, 0, 11}] // Flatten (* _Jean-François Alcover_, May 21 2013 *)

%K sign,tabl

%O 0,2

%A _Peter Luschny_, Jun 16 2012