OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-5/6) * eta(q^3)^3 * eta(q^8)^2 / (eta(q) * eta(q^4)) in powers of q.
Euler transform of period 24 sequence [ 1, 1, -2, 2, 1, -2, 1, 0, -2, 1, 1, -1, 1, 1, -2, 0, 1, -2, 1, 2, -2, 1, 1, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 32^(1/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A213618.
a(4*n + 3) = 0. a(4*n + 2) = 2 * A213023(n).
EXAMPLE
1 + x + 2*x^2 + 3*x^4 + 2*x^5 + 4*x^6 + 3*x^8 + 3*x^9 + 4*x^10 + ...
q^5 + q^11 + 2*q^17 + 3*q^29 + 2*q^35 + 4*q^41 + 3*q^53 + 3*q^59 + 4*q^65 + ...
MATHEMATICA
QP := QPochhammer; a[n_]:= SeriesCoefficient[(QP[q^3]^3*QP[q^8]^2 )/( QP[q]*QP[q^4]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jan 07 2018 *)
PROG
(PARI) {a(n) = local(A); if ( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^8 + A)^2 / (eta(x + A) * eta(x^4 + A)), n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 16 2012
STATUS
approved