%I #37 Sep 21 2021 09:52:12
%S 1418575498567,27899359257997,34460918582317,76075560855367,
%T 186460616596327,218021188549237,234280497145537,282854319391717,
%U 345120905374087,346117552180627,604439135284057,727417501795057,1041814617748747,1090754719898917,1539765965257747
%N Initial members of prime 12-tuplets (p, p+6, p+10, p+12, p+16, p+22, p+24, p+30, p+34, p+36, p+40, p+42).
%C All terms are congruent to 997 (modulo 2310). - _Matt C. Anderson_, May 29 2015
%H Matt C. Anderson and Dana Jacobsen, <a href="/A213601/b213601.txt">Table of n, a(n) for n = 1..2952</a> [first 90 terms from Matt C. Anderson]
%H Matt C. Anderson, <a href="https://sites.google.com/site/primeconstellations/">Computer search code and explanation</a>
%H Tony Forbes and Norman Luhn <a href="http://www.pzktupel.de/ktuplets">prime k-tuplets</a>
%H Norman Luhn <a href="http://www.pzktupel.de/smarchive.html">Table of n, a(n) for n = 1..20000</a>
%o (Perl) use ntheory ":all"; say for sieve_prime_cluster(1,1e14, 6, 10, 12, 16, 22, 24, 30, 34, 36, 40, 42); # _Dana Jacobsen_, Oct 02 2015
%Y Cf. A027569, A027570 (prime 10-tuplets).
%K nonn
%O 1,1
%A _Matt C. Anderson_, Jun 15 2012