

A213594


Greatest number k such that A048784(n) / 2^k is integer.


2



1, 2, 1, 3, 1, 3, 5, 4, 4, 4, 7, 5, 6, 7, 5, 7, 8, 7, 9, 8, 11, 11, 8, 7, 9, 11, 8, 13, 12, 11, 12, 11, 12, 12, 14, 13, 15, 15, 11, 13, 14, 18, 15, 15, 15, 14, 17, 14, 17, 18, 18, 20, 17, 19, 19, 19, 18, 19, 21, 19, 19, 21, 20, 22, 18, 21, 24, 22, 26, 24, 20
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

2adic valuation of A048784.
Property: a(n) > 0, that is A048784(n) is even, for n > 0.


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000


EXAMPLE

a(7) = 5 because A048784(7) / 2^5 = 32 / 32 = 1 is integer.


MAPLE

with(numtheory): for n from 1 to 100 do:ii:=0:for k from 500 by 1 to 1 while(ii=0) do: x:=evalf(tau(binomial(2*n, n))/2^k):if x=floor(x) then ii:=1: printf(`%d, `, k):else fi:od:od:


PROG

(PARI) a(n)=valuation(numdiv(binomial(2*n, n)), 2) \\ Charles R Greathouse IV, Jun 15 2012


CROSSREFS

Cf. A000005, A048784.
Sequence in context: A321893 A308673 A324287 * A325252 A243334 A234809
Adjacent sequences: A213591 A213592 A213593 * A213595 A213596 A213597


KEYWORD

nonn


AUTHOR

Michel Lagneau, Jun 15 2012


STATUS

approved



