OFFSET
1,2
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..500
S. Sykora, Finite and Infinite Sums of the Power Series (k^p)(x^k), DOI 10.3247/SL1Math06.002, Section V.
Index entries for linear recurrences with constant coefficients, signature (6,-14,16,-9,2).
FORMULA
a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 9*a(n-4) + 2*a(n-5).
G.f.: x*(1 + 4 x + x^2)/((1 - 2*x)*(1 - x)^4).
From Stanislav Sykora, Nov 27 2013: (Start)
a(n) = 2^n*Sum_{k=0..n} k^p*q^k, for p=3, q=1/2.
a(n) = 2^(n+1)*13 - (n^3 + 6*n^2 + 18*n + 26). (End)
a(n) = 2*a(n-1) + n^3. - Sochima Everton, Biereagu, Jul 14 2019
E.g.f.: 26*exp(2*x) - (26 +25*x +9*x^2 +x^3)*exp(x). - G. C. Greubel, Jul 25 2019
MATHEMATICA
(* First program *)
b[n_]:= 2^(n-1); c[n_]:= n^2;
t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213573 *)
d = Table[t[n, n], {n, 1, 40}] (* A213574 *)
s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213575 *)
(* Additional programs *)
Table[Sum[k^3*2^(n-k), {k, 0, n}], {n, 1, 30}] (* Vaclav Kotesovec, Nov 28 2013 *)
PROG
(PARI) vector(30, n, 13*2^(n+1)-(n^3+6*n^2+18*n+26)) \\ G. C. Greubel, Jul 25 2019
(Magma) [13*2^(n+1)-(n^3+6*n^2+18*n+26): n in [1..30]]; // G. C. Greubel, Jul 25 2019
(Sage) [13*2^(n+1)-(n^3+6*n^2+18*n+26) for n in (1..30)] # G. C. Greubel, Jul 25 2019
(GAP) List([1..30], n-> 13*2^(n+1)-(n^3+6*n^2+18*n+26)); # G. C. Greubel, Jul 25 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 18 2012
STATUS
approved