login
Numbers n such that the triangular number n*(n+1)/2 has only 1 or 2 different digits in base 10.
6

%I #24 Sep 15 2019 10:50:43

%S 0,1,2,3,4,5,6,7,8,9,10,11,12,13,18,24,34,36,44,58,66,77,100,101,105,

%T 109,114,132,141,363,666,714,816,1000,1095,1287,1332,1541,3363,6666,

%U 10000,10114,13332,66666,100000,133332,666666,1000000,1333332,6666666,10000000

%N Numbers n such that the triangular number n*(n+1)/2 has only 1 or 2 different digits in base 10.

%C The list of triangular numbers containing only one digit (A045914) is finite. This list is infinite because numbers like 133332, 666666, and 1000000 occur an infinite number of times.

%C A118668(a(n)) <= 2. - _Reinhard Zumkeller_, Jul 11 2015

%C A325907(n) is a term. - _Seiichi Manyama_, Sep 14 2019

%H Seiichi Manyama, <a href="/A213517/b213517.txt">Table of n, a(n) for n = 1..58</a>

%t t = {}; Do[tri = n*(n+1)/2; If[Length[Union[IntegerDigits[tri]]] <= 2, AppendTo[t, n]], {n, 0, 10^5}]; t

%o (Haskell)

%o a213517 n = a213517_list !! (n-1)

%o a213517_list = filter ((<= 2) . a118668) [0..]

%o -- _Reinhard Zumkeller_, Jul 11 2015

%o (PARI) for(k=0, 1e8, if(#Set(digits(k*(k+1)/2))<=2, print1(k", "))) \\ _Seiichi Manyama_, Sep 15 2019

%Y Cf. A000217, A045914, A213516, A322570, A325907.

%Y Cf. A118668.

%K nonn,base

%O 1,3

%A _T. D. Noe_, Jun 21 2012