login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213437 Nonlinear recurrence: a(n) = a(n-1) + (a(n-1)+1)*Product_{j=1..n-2} a(j).
(Formerly N1082)
6
1, 3, 7, 31, 703, 459007, 210066847231, 44127887746116242376703, 1947270476915296449559747573381594836628779007 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This sequence was going to be included in the Aho-Sloane paper, but was omitted from the published version.

It appears that the sequence becomes periodic mod 10^k for any k, with period 3. The last digits are (1,3,7) repeated. Modulo 10^5 the sequence enters the cycle (56703, 79007, 23231) after the first 10 terms. - M. F. Hasler, Jul 23 2012. See also A214635, A214636.

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

LINKS

Table of n, a(n) for n=1..9.

A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fib. Quart., 11 (1973), 429-437. [Includes many similar sequences, although not this one.]

FORMULA

a(n) = a(n-1)+(a(n-1)+1)*(a(n-1)-a(n-2))*a(n-2)/(a(n-2)+1). - Johan de Ruiter, Jul 23 2012

a(2+3k) = 9007 (mod 10^4) for all k>0. - M. F. Hasler, Jul 23 2012

a(n) ~ c^(2^n), where c = A076949 = 1.2259024435287485386279474959130085213212293209696612823177009... . - Vaclav Kotesovec, May 06 2015

a(n) = A001699(n)/A001699(n-1); a(n+1) - a(n) = A001699(n) + A001699(n-1); a(n) = A003095(n) + A003095(n-1). - Peter Bala, Feb 03 2017

MAPLE

A213437 := proc(n)

        if n = 1 then 1;

        else procname(n-1)+(1+procname(n-1))*mul(procname(j), j=1..n-2);

        end if;

end proc: # R. J. Mathar, Jul 23 2012

MATHEMATICA

RecurrenceTable[{a[n] == a[n-1]+(a[n-1]+1)*(a[n-1]-a[n-2])*a[n-2]/(a[n-2]+1), a[1]==1, a[2]==3}, a, {n, 1, 10}] (* Vaclav Kotesovec, May 06 2015 *)

PROG

(PARI) a=[1]; for(n=1, 11, a=concat(a, a[n] + (a[n]+1) * prod(k=1, n-1, a[k] ))); a \\ - M. F. Hasler, Jul 23 2012

CROSSREFS

Cf. A076949, A214635, A214636, A003095, A001699.

Sequence in context: A121810 A081475 A123212 * A070231 A263049 A167917

Adjacent sequences:  A213434 A213435 A213436 * A213438 A213439 A213440

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jun 11 2012

EXTENSIONS

Definition recovered by Johan de Ruiter, Jul 23 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 05:31 EST 2020. Contains 338781 sequences. (Running on oeis4.)