login
Numbers k such that k^8 - prime(k) is prime.
2

%I #22 Jun 02 2023 02:00:09

%S 6,10,12,60,72,168,174,190,204,230,290,300,396,536,628,948,972,990,

%T 1014,1042,1050,1174,1254,1324,1326,1428,1566,1602,1662,1684,1808,

%U 1854,1866,1942,1950,2070,2154,2170,2206,2214,2234,2332,2388,2508,2660,2668,2784

%N Numbers k such that k^8 - prime(k) is prime.

%C k such that A001016(k) - A000040(k) is in A000040.

%H Robert Israel, <a href="/A213428/b213428.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1) = 6 because 6^8 - prime(6) = 1679603 is prime.

%p P:= select(isprime,[2,seq(i,i=3..10^5,2)]):

%p select(t -> isprime(t^8 - P[t]), [seq(i,i=2..nops(P),2)]); # _Robert Israel_, Jun 02 2023

%t Select[Range[3000], PrimeQ[#^8 - Prime[#]] &] (* _T. D. Noe_, Jun 11 2012 *)

%Y Cf. A001016, A064712, A212881, A212883.

%K nonn,easy

%O 1,1

%A _Jonathan Vos Post_, Jun 11 2012