login
Number of (w,x,y) with all terms in {0,...,n} and max(w,x,y) < 2*min(w,x,y).
5

%I #27 Jul 17 2016 17:50:24

%S 0,1,2,9,16,35,54,91,128,189,250,341,432,559,686,855,1024,1241,1458,

%T 1729,2000,2331,2662,3059,3456,3925,4394,4941,5488,6119,6750,7471,

%U 8192,9009,9826,10745,11664,12691,13718,14859,16000,17261,18522

%N Number of (w,x,y) with all terms in {0,...,n} and max(w,x,y) < 2*min(w,x,y).

%C For a guide to related sequences, see A212959.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-4,1,2,-1).

%F a(n) = (n+1)^3 - A213390(n).

%F a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6).

%F G.f.: (x + 4*x^3 + x^5)/((1 - x)^4*(1 + x)^2).

%F a(n) = n * ceiling(n^2/4). - _Wesley Ivan Hurt_, Jun 15 2013

%F a(n) = n*(2*n^2+3*(1-(-1)^n))/8. - _Luce ETIENNE_, Jul 17 2016

%t t = Compile[{{n, _Integer}}, Module[{s = 0},

%t (Do[If[Max[w, x, y] < 2*Min[w, x, y], s = s + 1],

%t {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];

%t m = Map[t[#] &, Range[0, 50]] (* A213389 *)

%o (PARI) a(n)=n*ceil(n^2/4) \\ _Charles R Greathouse IV_, Jul 17 2016

%Y Cf. A212959.

%K nonn,easy

%O 0,3

%A _Clark Kimberling_, Jun 11 2012