login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213348 6-quantum transitions in systems of N >= 6 spin 1/2 particles, in columns by combination indices. 3

%I

%S 1,14,112,8,672,144,3360,1440,45,14784,10560,990,59136,63360,11880,

%T 220,219648,329472,102960,5720,768768,1537536,720720,80080,1001,

%U 2562560,6589440,4324320,800800,30030,8200192,26357760,23063040

%N 6-quantum transitions in systems of N >= 6 spin 1/2 particles, in columns by combination indices.

%C For a general discussion, please see A213343.

%C This a(n) is for sextuple-quantum transitions (q = 6).

%C It lists the flattened triangle T(6;N,k) with rows N = 6,7,... and columns k = 0..floor((N-6)/2).

%D See A213343

%H Stanislav Sykora, <a href="/A213348/b213348.txt">Table of n, a(n) for n = 6..2309</a>

%H Stanislav Sykora, <a href="/A213348/a213348.txt">T(6;N,k) with rows N = 6..100 and columns k = 0..floor((N-6)/2)</a>

%H Stanislav Sýkora, <a href="http://www.ebyte.it/stan/blog12to14.html#14Dec31">Magnetic Resonance on OEIS</a>, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.

%F Set q = 6 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).

%e Starting rows of the triangle:

%e N | k = 0, 1, ..., floor((N-6)/2)

%e 6 | 1

%e 7 | 14

%e 8 | 112 8

%e 9 | 672 144

%e 10 | 3360 1440 45

%t With[{q = 6}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* _Michael De Vlieger_, Nov 20 2019 *)

%o (PARI) See A213343; set thisq = 6

%Y Cf. A051288 (q=0), A213343 to A213347 (q=1 to 5), A213349 to A213352 (q=7 to 10).

%Y Cf. A002409 (first column, with offset 6), A004312 (row sums).

%K nonn,tabf,changed

%O 6,2

%A _Stanislav Sykora_, Jun 13 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 04:33 EST 2019. Contains 329350 sequences. (Running on oeis4.)