login
A213340
Numbers which are the values of the quadratic polynomial 5+8t+12k+16kt on nonnegative integers.
2
5, 13, 17, 21, 29, 37, 41, 45, 53, 61, 65, 69, 77, 85, 89, 93, 97, 101, 109, 113, 117, 125, 133, 137, 141, 149, 153, 157, 161, 165, 173, 181, 185, 189, 197, 205, 209, 213, 221, 229, 233, 237, 241, 245, 253, 257
OFFSET
1,1
COMMENTS
For all these numbers a(n) we have the following Erdős-Straus decomposition: 4/p = 4/(5+8*t+12*k+16*k*t) = 1/(2*(2*k+1)*(2+3*t+3*k+4*k*t)) + 1/(2+3*t+3*k+4*k*t) + 1/(2*(5+8*t+12*k+16*k*t)*(2*k+1)*(2+3*t+3*k+4*k*t)).
Moreover this sequence is related to irreducible twin Pythagorean triples: the associated Pythagorean triple is [2n(n+1), 2n+1,2n(n+1)+1], where n=2+4t+6k+8kt.
In 1948 Erdős and Straus conjectured that for any positive integer n >= 2 the equation 4/n = 1/x + 1/y +1/z has a solution with positive integers x, y and z (without the additional requirement 0 < x < y < z).
For the solution (x,y,z) having the largest z value, see (A075245, A075246, A075247).
REFERENCES
I. Gueye and M. Mizony, Recent progress about Erdős-Straus conjecture, B SO MA S S, Volume 1, Issue 2, pp. 6-14.
I. Gueye and M. Mizony, Towards the proof of Erdős-Straus conjecture, B SO MA S S, Volume 1, Issue 2, pp. 141-150.
LINKS
P. Erdős, On a Diophantine equation, (Hungarian. Russian, English summaries), Mat. Lapok 1, 1950, pp. 192-210.
M. Mizony and M.-L. Gardes, Sur la conjecture d'Erdős et Straus, see pages 14-17.
Eric Weisstein's World of Mathematics, Twin Pythagorean Triple.
K. Yamamoto, On the Diophantine Equation 4/n=1/x+1/y+1/z, Mem. Fac. Sci. Kyushu U. Ser. A 19, 37-47, 1965.
EXAMPLE
For n=5 the a(5)=29 solutions are {k=0, t=3}, {k=2, t=0}.
MAPLE
G:=(p, d)->4/p = [4*d/(p+d)/(p+1), 4/(p+d), 4*d/(p+d)/(p+1)/p]:
cousin:=proc(p)
local d;
for d from 3 by 4 to 100 do
if ((p+1)/2) mod d=0 and (p+d)*(p+1) mod d=0 then
return([p, G(p, d)]) fi; od;
end:
for k to 20 do cousin(4*k+1) od;
CROSSREFS
Cf. A001844 (centered square numbers: 2n(n+1)+1).
Cf. A005408 (x values), A046092 (y values).
Cf. A195770 (positive integers a for which there is a 1-Pythagorean triple (a,b,c) satisfying a<=b).
A073101 number of solutions (x,y,z) to 4/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z.
Sequence in context: A077425 A039955 A375937 * A014539 A249034 A208883
KEYWORD
nonn
AUTHOR
Michel Mizony, Jun 09 2012
STATUS
approved