OFFSET
0,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..100
FORMULA
G.f. satisfies: A(x) = F(x*A(x)^4) where F(x) = 1 + x/F(-x)^4 is the g.f. of A213335.
G.f. A(x) satisfies: A(1 - G(-x)) = G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
a(n) = Sum_{k=0..n} binomial(n+3*k-1,n-k) * binomial(4*k,k)/(3*k+1). - Seiichi Manyama, Oct 03 2023
EXAMPLE
G.f.: A(x) = 1 + x + 8*x^2 + 64*x^3 + 568*x^4 + 5440*x^5 + 54888*x^6 +...
G.f.: A(x) = G(x/(1-x)^4) where G(x) = 1 + x*G(x)^4 is g.f. of A002293:
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
PROG
(PARI) /* G.f. A(x) = G(x/(1-x)^4) where G(x) = 1 + x*G(x)^4: */
{a(n)=local(A, G=1+x); for(i=1, n, G=1+x*G^4+x*O(x^n)); A=subst(G, x, x/(1-x+x*O(x^n))^4); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* G.f. A(x) = F(x*A(x)^4) where F(x) = 1 + x/F(-x)^4: */
{a(n)=local(F=1+x+x*O(x^n), A=1); for(i=1, n+1, F=1+x/subst(F^4, x, -x+x*O(x^n))); A=(serreverse(x/F^4)/x)^(1/4); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 09 2012
STATUS
approved