

A213305


Minimal prime with n nonprime substrings (Version 1: substrings with leading zeros are considered to be nonprime).


2



2, 13, 11, 127, 103, 101, 1013, 1019, 1021, 1009, 10177, 10037, 10067, 10007, 10009, 100237, 100271, 100153, 100043, 100003, 100049, 1001173, 1000313, 1000037, 1000033, 1000039, 1000003, 1000081, 10000379, 10001237, 10000223
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Hieronymus Fischer, Table of n, a(n) for n = 0..100


FORMULA

a(n) > 10^floor((sqrt(8*n+1)1)/2) for n>0.
a(m(m+1)/2) > 10^m, m>0.
a(n) >= A213302(n).


EXAMPLE

a(0) = 2, since 2 is the least prime with zero nonprime substrings.
a(1) = 13, since 13 is the least prime with exactly 1 (“1”) nonprime substrings.
a(2) = 11, since 11 is the least prime with exactly 2 (“1” and “1”) nonprime substrings.


CROSSREFS

Cf. A019546, A035232, A039996, A046034, A069489, A085823, A211681, A211682, A211684, A211685.
Cf. A035244, A079307, A213300  A213321.
Sequence in context: A157480 A213306 A213307 * A002591 A037055 A065584
Adjacent sequences: A213302 A213303 A213304 * A213306 A213307 A213308


KEYWORD

nonn,base


AUTHOR

Hieronymus Fischer, Aug 26 2012


STATUS

approved



