login
A213280
Triangle read by rows: T(n,k) (n>=1, 1 <= k <= n) = number of permutations of [1..n] in which none of the cycle lengths are divisible by k.
2
0, 0, 1, 0, 3, 4, 0, 9, 16, 18, 0, 45, 80, 90, 96, 0, 225, 400, 540, 576, 600, 0, 1575, 2800, 3780, 4032, 4200, 4320, 0, 11025, 22400, 26460, 32256, 33600, 34560, 35280, 0, 99225, 179200, 238140, 290304, 302400, 311040, 317520, 322560, 0, 893025, 1792000, 2381400, 2612736, 3024000, 3110400, 3175200, 3225600, 3265920
OFFSET
1,5
LINKS
E. D. Bolker and A. M. Gleason, Counting permutations, J. Combin. Thy., A 29 (1980), 236-242.
EXAMPLE
Triangle begins
[0],
[0, 1],
[0, 3, 4],
[0, 9, 16, 18],
[0, 45, 80, 90, 96],
[0, 225, 400, 540, 576, 600],
[0, 1575, 2800, 3780, 4032, 4200, 4320],
[0, 11025, 22400, 26460, 32256, 33600, 34560, 35280],
[0, 99225, 179200, 238140, 290304, 302400, 311040, 317520, 322560],
[0, 893025, 1792000, 2381400, 2612736, 3024000, 3110400, 3175200, 3225600, 3265920],
[0, 9823275, 19712000, 26195400, 28740096, 33264000, 34214400, 34927200, 35481600, 35925120, 36288000],
[0, 108056025, 216832000, 288149400, 344881152, 365904000, 410572800, 419126400, 425779200, 431101440, 435456000, 439084800],
...
MAPLE
read transforms;
f:=(n, d)->mul(j-did(j, d), j=1..n); # did(d, j) = 1 iff j divides d, otherwise 0
g:=n->[seq(f(n, d), d=1..n)];
[seq(g(n), n=1..14)];
# second Maple program:
T:= proc(n, k) option remember; `if`(n=0, 1, add(
`if`(irem(j, k)=0, 0, binomial(n-1, j-1)*(j-1)!*
T(n-j, k)), j=1..n))
end:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, May 14 2016
MATHEMATICA
T[n_, k_] := T[n, k] = If[n == 0, 1, Sum[If[Mod[j, k] == 0, 0, Binomial[n - 1, j - 1]*(j - 1)!*T[n - j, k]], {j, 1, n}]];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 26 2016, after Alois P. Heinz *)
CROSSREFS
Cf. A001563 (diagonal of triangle), A213279.
Sequence in context: A308642 A158674 A077628 * A056862 A113035 A374195
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 08 2012
STATUS
approved