

A213250


Numbers n such that the coefficient of x^n in the expansion of Product_{k>=1} (1x^k)^2 is zero.


7



7, 11, 12, 17, 18, 21, 22, 25, 32, 37, 39, 41, 42, 43, 46, 47, 49, 54, 57, 58, 60, 62, 65, 67, 68, 72, 74, 75, 76, 81, 82, 87, 88, 90, 92, 95, 97, 98, 99, 106, 107, 109, 111, 112, 113, 116, 117, 120, 122, 123, 125, 126, 128, 130, 132, 136, 137
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Indices of zero entries in A002107. Asymptotic density is 1.
Contains A093519, numbers with no representation as sum of two or fewer pentagonal numbers.


LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000


MATHEMATICA

LongPoly = Series[Product[1  q^n, {n, 1, 300}]^2, {q, 0, 300}]; ZeroTable = {}; For[i = 1, i < 301, i++, If[Coefficient[LongPoly, q^i] == 0, AppendTo[ZeroTable, i]]]; ZeroTable


PROG

(PARI)
x='x+O('x^200);
v=Vec(eta(x)^2  1);
for(k=1, #v, if(v[k]==0, print1(k, ", ")));
/* Joerg Arndt, Jun 07 2012 */


CROSSREFS

Cf. A093519.
Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1  x^j)^m is zero: A090864 (m=1), this sequence (m=2), A014132 (m=3), A302056 (m=4), A302057 (m=5), A020757 (m=6), A322043 (m=15).
Sequence in context: A195608 A228523 A193301 * A226689 A117610 A176173
Adjacent sequences: A213247 A213248 A213249 * A213251 A213252 A213253


KEYWORD

easy,nonn


AUTHOR

William J. Keith, Jun 07 2012


STATUS

approved



