This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213247 Number of nonzero elements in GF(2^n) that are 11th powers. 7
 1, 3, 7, 15, 31, 63, 127, 255, 511, 93, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 95325, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 97612893, 2147483647, 4294967295, 8589934591, 17179869183, 34359738367, 68719476735 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 FORMULA a(n) = M / GCD( M, 11 ) where M=2^n-1. From Colin Barker, Aug 24 2014: (Start) a(n) = 1025*a(n-10)-1024*a(n-20). G.f.: x*(512*x^18 +768*x^17 +896*x^16 +960*x^15 +992*x^14 +1008*x^13 +1016*x^12 +1020*x^11 +1022*x^10 +93*x^9 +511*x^8 +255*x^7 +127*x^6 +63*x^5 +31*x^4 +15*x^3 +7*x^2 +3*x +1) / (1024*x^20 -1025*x^10 +1). (End) a(n) = (2^n - 1)/11 if n is divisible by 10, 2^n - 1 otherwise. - Robert Israel, Aug 24 2014 MAPLE A213247:=n->(2^n-1)/igcd(2^n-1, 11): seq(A213247(n), n=1..40); # Wesley Ivan Hurt, Aug 24 2014 MATHEMATICA Table[(2^n - 1)/GCD[2^n - 1, 11], {n, 50}] (* Vincenzo Librandi, Mar 16 2013 *) PROG (MAGMA) [(2^n - 1) / GCD (2^n - 1, 11): n in [1..40]]; // Vincenzo Librandi, Mar 16 2013 (PARI) { for(n=1, 36, if(n%10, a=2^n-1, a=(2^n-1)/11); print1(a, ", ")) } \\ K. Spage, Aug 23 2014 CROSSREFS Cf. A213243 (cubes), A213244 (5th powers), A213245 (7th powers), A213246 (9th powers), A213248 (13th powers). Sequence in context: A105754 A116690 A267258 * A043755 A105755 A043764 Adjacent sequences:  A213244 A213245 A213246 * A213248 A213249 A213250 KEYWORD nonn AUTHOR Joerg Arndt, Jun 07 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.