This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213245 Number of nonzero elements in GF(2^n) that are 7th powers. 8
 1, 3, 1, 15, 31, 9, 127, 255, 73, 1023, 2047, 585, 8191, 16383, 4681, 65535, 131071, 37449, 524287, 1048575, 299593, 4194303, 8388607, 2396745, 33554431, 67108863, 19173961, 268435455, 536870911, 153391689, 2147483647, 4294967295, 1227133513, 17179869183, 34359738367, 9817068105 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,9,0,0,-8). FORMULA a(n) = M / gcd( M, 7 ), where M=2^n-1. Conjectures from Colin Barker, Aug 23 2014, verified by Robert Israel, Nov 20 2016: (Start) a(n) = 9*a(n-3)-8*a(n-6). G.f.: x*(4*x^4+6*x^3+x^2+3*x+1) / ( (x-1)*(2*x-1)*(x^2+x+1)*(4*x^2+2*x+1) ). (End) MAPLE A213245:=n->(2^n-1)/gcd(2^n-1, 7): seq(A213245(n), n=1..40); # Wesley Ivan Hurt, Aug 24 2014 MATHEMATICA Table[(2^n - 1)/GCD[2^n - 1, 7], {n, 60}] (* Vincenzo Librandi, Mar 16 2013 *) PROG (MAGMA) [(2^n - 1) / GCD (2^n - 1, 7): n in [1..40]]; // Vincenzo Librandi, Mar 16 2013 (PARI) a(n)=(2^n-1)/gcd(2^n-1, 7) \\ Edward Jiang, Sep 04 2014 CROSSREFS Cf. A213243 (cubes), A213244 (5th powers), A213246 (9th powers), A213247 (11th powers), A213248 (13th powers). Sequence in context: A284861 A284234 A089278 * A087071 A053485 A160628 Adjacent sequences:  A213242 A213243 A213244 * A213246 A213247 A213248 KEYWORD nonn,easy AUTHOR Joerg Arndt, Jun 07 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.