

A213057


Triangle read by rows: left edge is all 1's, right edge is 1, 2, 3, 4, ...; construct an internal entriy by concatenating the two entries above it.


1



1, 1, 2, 1, 12, 3, 1, 112, 123, 4, 1, 1112, 112123, 1234, 5, 1, 11112, 1112112123, 1121231234, 12345, 6, 1, 111112, 111121112112123, 11121121231121231234, 112123123412345, 123456, 7, 1, 1111112, 111112111121112112123, 11112111211212311121121231121231234, 11121121231121231234112123123412345, 112123123412345123456, 1234567, 8
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Closely related to A004073  see KuboVakil.
After the 9th row of course we will encounter strings like 111...110, which is unsatisfactory. Still, the initial rows look nice and the sequence serves as a pointer to the KuboVakil paper.


REFERENCES

T. Kubo and R. Vakil, On Conway's recursive sequence, Discr. Math. 152 (1996), 225252.


LINKS

Table of n, a(n) for n=0..35.


EXAMPLE

Triangle begins
1
1 2
1 12 3
1 112 123 4
1 1112 112123 1234 5
1 11112 1112112123 1121231234 12345 6
1 111112 111121112112123 11121121231121231234 112123123412345 123456 7
...


CROSSREFS

Cf. A004073, A007318.
Sequence in context: A249163 A211099 A058734 * A103187 A107722 A167128
Adjacent sequences: A213054 A213055 A213056 * A213058 A213059 A213060


KEYWORD

nonn,tabl


AUTHOR

N. J. A. Sloane, Jun 03 2012


STATUS

approved



