login
A213050
Primes of the form 4*k+1 with primitive root +2.
2
5, 13, 29, 37, 53, 61, 101, 149, 173, 181, 197, 269, 293, 317, 349, 373, 389, 421, 461, 509, 541, 557, 613, 653, 661, 677, 701, 709, 757, 773, 797, 821, 829, 853, 877, 941, 1061, 1109, 1117, 1213, 1229, 1237, 1277, 1301, 1373, 1381, 1453, 1493, 1549, 1621
OFFSET
1,1
COMMENTS
Primes p such that both +2 and -2 are primitive roots mod p.
A001122 is the union of A213050 and A213051.
LINKS
MATHEMATICA
Select[Prime[Range[300]], Mod[#, 4] == 1 && PrimitiveRoot[#, 2] == 2&] (* Jean-François Alcover, Jul 22 2018 *)
PROG
(PARI)
{ forprime (p=3, 10^4,
rp = znorder(Mod(+2, p));
rm = znorder(Mod(-2, p));
if ( (rp==p-1) && (rm==p-1), print1(p, ", ") );
); }
CROSSREFS
Cf. A213051 (primes 4*k+3 with primitive root +2).
Cf. A001122 (primitive root +2), A007885 (primitive root +2 or -2).
Sequence in context: A261580 A007521 A294919 * A216822 A217466 A078598
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jun 03 2012
STATUS
approved