This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213027 Number A(n,k) of 3n-length k-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word; square array A(n,k), n>=0, k>=0, by antidiagonals. 12
 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 4, 1, 0, 1, 1, 7, 19, 1, 0, 1, 1, 10, 61, 98, 1, 0, 1, 1, 13, 127, 591, 531, 1, 0, 1, 1, 16, 217, 1810, 6101, 2974, 1, 0, 1, 1, 19, 331, 4085, 27631, 65719, 17060, 1, 0, 1, 1, 22, 469, 7746, 82593, 441604, 729933, 99658, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 COMMENTS In general, column k > 1 is asymptotic to a(n) ~ 3^(3*n+1/2) * (k-1)^(n+1) / (sqrt(Pi) * (2*k-3)^2 * 4^n * n^(3/2)). - Vaclav Kotesovec, Aug 31 2014 LINKS Alois P. Heinz, Antidiagonals n = 0..140, flattened FORMULA A(n,k) = 1/n * Sum_{j=0..n-1} C(3*n,j) * (n-j) * (k-1)^j if n>0, k>1; A(0,k) = 1; A(n,k) = k if n>0, k<2. A(n,k) = 1/k * A213028(n,k) if n>0, k>1; else A(n,k) = A213028(n,k). EXAMPLE A(0,k) = 1: the empty word. A(n,1) = 1: (aaa)^n. A(2,2) = 4: there are 4 words of length 6 over alphabet {a,b}, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word: aaaaaa, aaabbb, aabbba, abbbaa. A(2,3) = 7: aaaaaa, aaabbb, aaaccc, aabbba, aaccca, abbbaa, acccaa. A(3,2) = 19: aaaaaaaaa, aaaaaabbb, aaaaabbba, aaaabbbaa, aaabaaabb, aaabbaaab, aaabbbaaa, aaabbbbbb, aabaaabba, aabbaaaba, aabbbaaaa, aabbbabbb, aabbbbbba, abaaabbaa, abbaaabaa, abbbaaaaa, abbbaabbb, abbbabbba, abbbbbbaa. Square array A(n,k) begins:   1, 1,    1,     1,      1,       1,       1, ...   0, 1,    1,     1,      1,       1,       1, ...   0, 1,    4,     7,     10,      13,      16, ...   0, 1,   19,    61,    127,     217,     331, ...   0, 1,   98,   591,   1810,    4085,    7746, ...   0, 1,  531,  6101,  27631,   82593,  195011, ...   0, 1, 2974, 65719, 441604, 1751197, 5153626, ... MAPLE A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k,     1/n *add(binomial(3*n, j) *(n-j) *(k-1)^j, j=0..n-1))): seq(seq(A(n, d-n), n=0..d), d=0..12); MATHEMATICA a[0, _] = 1; a[_, k_ /; k < 2] := k; a[n_, k_] := 1/n*Sum[Binomial[3*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}]; Table[a[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *) CROSSREFS Columns k=0-10 give: A000007, A000012, A047099, A218473, A218474, A218475, A218476, A218477, A218478, A218479, A218480. Rows n=0-3 give: A000012, A057427, A016777(k-1), A127854(k-1). Main diagonal gives: A218472. Cf. A183134, A183135, A213028. Sequence in context: A295281 A256461 A174699 * A290459 A290458 A035253 Adjacent sequences:  A213024 A213025 A213026 * A213028 A213029 A213030 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Jun 03 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 15:31 EDT 2019. Contains 328101 sequences. (Running on oeis4.)