

A213014


Number of zeros following the initial 1 in nth absolute difference of primes.


2



0, 1, 0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 3, 2, 1, 0, 0, 1, 0, 3, 2, 1, 0, 0, 6, 5, 4, 3, 2, 1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 2, 1, 0, 0, 2, 1, 0, 0, 1, 0, 5, 4, 3, 2, 1, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 4, 3, 2, 1, 0, 0, 0, 0, 3, 2, 1, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,9


COMMENTS

Related to Gilbreath's conjecture: number of "0"s preceding the first term > 1 in the nth row of the table A036261 (= row n of the table A036262 which starts with row 0).
Gilbreath's conjecture would be violated if the initial 1 would not always be followed by some number (>= 0) of "0"s and then a "2" as the first term > 1. See also A089582.


LINKS

Table of n, a(n) for n=1..107.


PROG

(PARI) my( p=primes(150), D(v)=vecextract(v, "^1")vecextract(v, "^1")); while(p=abs(D(p)), for(i=2, #p, p[i] & !print1(i2", ") & next(2)); break)


CROSSREFS

Sequence in context: A263879 A085664 A154007 * A022962 A023448 A307337
Adjacent sequences: A213011 A213012 A213013 * A213015 A213016 A213017


KEYWORD

nonn


AUTHOR

M. F. Hasler, Jun 02 2012


STATUS

approved



