login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (w,x,y) with all terms in {0,...,n} and range = 2*n-w-x.
3

%I #22 Mar 16 2023 08:50:15

%S 1,5,11,20,32,46,63,83,105,130,158,188,221,257,295,336,380,426,475,

%T 527,581,638,698,760,825,893,963,1036,1112,1190,1271,1355,1441,1530,

%U 1622,1716,1813,1913,2015,2120,2228,2338,2451,2567,2685,2806,2930

%N Number of (w,x,y) with all terms in {0,...,n} and range = 2*n-w-x.

%C For a guide to related sequences, see A212959.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1).

%F a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).

%F G.f.: (1 + 3*x + 2*x^2 + 2*x^3)/((1 - x)^3*(1 + x + x^2)). [corrected by _Bruno Berselli_, Jan 23 2017]

%t t = Compile[{{n, _Integer}}, Module[{s = 0},

%t (Do[If[Max[w, x, y] - Min[w, x, y] == 2 n - w - x,

%t s = s + 1],

%t {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];

%t m = Map[t[#] &, Range[0, 60]] (* A212978 *)

%t LinearRecurrence[{2,-1,1,-2,1},{1,5,11,20,32},50] (* _Harvey P. Dale_, Sep 30 2017 *)

%Y Cf. A212959.

%Y Second bisection of A281333.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_, Jun 03 2012