The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212885 Expansion of phi(q) * phi(-q)^2 in powers of q where phi() is a Ramanujan theta function. 7

%I

%S 1,-2,-4,8,6,-8,-8,0,12,-10,-8,24,8,-8,-16,0,6,-16,-12,24,24,-16,-8,0,

%T 24,-10,-24,32,0,-24,-16,0,12,-16,-16,48,30,-8,-24,0,24,-32,-16,24,24,

%U -24,-16,0,8,-18,-28,48,24,-24,-32,0,48,-16,-8,72,0,-24,-32

%N Expansion of phi(q) * phi(-q)^2 in powers of q where phi() is a Ramanujan theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A212885/b212885.txt">Table of n, a(n) for n = 0..1000</a>

%H M. Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of phi(-x) * phi(-x^2)^2 = phi(-x^2)^4 / phi(x) in powers of x where phi() is a Ramanujan theta function.

%F Expansion of eta(q^2)^3 * eta(q)^2 / eta(q^4)^2 in powers of q.

%F Euler transform of period 4 sequence [-2, -5, -2, -3, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 32 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A045828.

%F G.f.: Product_{k>0} (1 - x^(2*k))^3 * (1 - x^k)^2 / (1 - x^(4*k))^2.

%F a(4*n) = A005875(n). a(4*n + 1) = -2 * A045834(n). a(4*n + 2) = - A005877(n) = -4 * A045828(n).

%F a(8*n) = A004015(n). a(8*n + 3) = A005878(n) = 8 * A008443(n). a(8*n + 4)= A005887(n). a(8*n + 5) = -2 * A004024(n). a(8*n + 6) = -8 * A213624(n). a(8*n + 7) = 0.

%e G.f. = 1 - 2*q - 4*q^2 + 8*q^3 + 6*q^4 - 8*q^5 - 8*q^6 + 12*q^8 - 10*q^9 + ...

%t a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, q]* EllipticTheta[3, 0, -q]^2, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* _G. C. Greubel_, Nov 30 2017 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x + A)^2 / eta(x^4 + A)^2, n))};

%Y Cf. A004015, A004024, A005875, A005877, A005878, A005887, A008443, A045828, A045834, A213624.

%K sign

%O 0,2

%A _Michael Somos_, May 29 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 13:52 EST 2020. Contains 331194 sequences. (Running on oeis4.)