login
A212866
Number of nondecreasing sequences of n 1..6 integers with no element dividing the sequence sum.
2
0, 7, 16, 29, 52, 82, 122, 182, 259, 363, 492, 648, 816, 1018, 1268, 1586, 1973, 2419, 2904, 3452, 4063, 4762, 5543, 6421, 7393, 8487, 9700, 11052, 12543, 14183, 15960, 17915, 20023, 22303, 24760, 27422, 30279, 33373, 36697, 40284, 44131, 48250, 52614
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +2*a(n-4) +a(n-5) +a(n-6) -4*a(n-7) +4*a(n-9) -a(n-10) -a(n-11) -a(n-12) -a(n-13) +4*a(n-14) -4*a(n-16) +a(n-17) +a(n-18) +2*a(n-19) -a(n-20) -5*a(n-21) +5*a(n-22) +a(n-23) -2*a(n-24) -a(n-25) -a(n-26) +4*a(n-27) -4*a(n-29) +a(n-30) +a(n-31) +a(n-32) +a(n-33) -4*a(n-34) +4*a(n-36) -a(n-37) -a(n-38) -2*a(n-39) +2*a(n-40) +2*a(n-41) -3*a(n-42) +a(n-43).
EXAMPLE
Some solutions for n=8:
..2....3....2....2....2....2....3....3....2....2....2....2....4....5....3....2
..2....3....2....2....3....5....3....4....2....3....2....2....4....5....3....3
..2....3....3....2....3....6....4....4....3....4....2....3....4....5....3....3
..3....3....3....2....3....6....4....4....3....4....2....3....5....5....3....3
..3....3....4....2....6....6....4....5....4....4....2....4....6....6....3....3
..3....3....5....2....6....6....4....6....4....4....2....5....6....6....5....3
..4....3....6....4....6....6....4....6....5....5....2....5....6....6....6....3
..4....4....6....5....6....6....5....6....6....5....5....5....6....6....6....3
MAPLE
S6:= combinat:-powerset({$2..6}):
f:= proc(n) local s, t, G, S, i, j, T;
t:= 0:
for S in S6 do
G:= coeff(mul(add(x^i*y^(i*j), i=0..n), j=S), x, n);
T:= select(s -> S = select(k -> s mod k <> 0, {$2..6}), [$2*n..6*n]);
t:= t + add(coeff(G, y, s), s= T);
od;
t
end proc:
map(f, [$1..50]); # Robert Israel, Nov 23 2023
CROSSREFS
Column 6 of A212868.
Sequence in context: A024627 A211784 A180724 * A234717 A364352 A140511
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 29 2012
STATUS
approved