login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212851 Number of n X 4 arrays with rows being permutations of 0..3 and no column j greater than column j-1 in all rows. 13
1, 211, 8983, 271375, 7225951, 182199871, 4479288703, 108787179775, 2626338801151, 63217691436031, 1519452489242623, 36493601345048575, 876167372044132351, 21031868446675976191, 504811062363654815743 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Column 4 of A212855.

From Petros Hadjicostas, Aug 25 2019:

All formulas below follow from the theory in the documentation of array A309951.

We have Sum_{s = 0..A000041(4)} (-1)^s * A309951(4,s) * a(n-s) = 0, i.e., a(n) - 47*a(n-1) + 718*a(n-2) - 4416*a(n-3) + 10656*a(n-4) - 6912*a(n-5) = 0 for n >= 6. This is a consequence of Eq. (6) on p. 248 of Abramson and Promislow (1978).

Note that in R. J. Mathar's formula a(n) = 24^n + 6^n - 3*12^n + 2*4^n - 1^n, the numbers 1, 4, 12, 6, and 24 (that are raised to the n-th power) are the multinomial coefficients of the A000041(4) = 5 integer partitions of 4: 4!/4! = 1, 4!/(1!3!) = 4, 12 = 4!/(1!1!2!), 6 = 4!/(2!2!), 24 = 4!/(1!1!1!1!).

Note also that these numbers appear also in the denominator of the Colin Barker's g.f.: (1 - x)*(1 - 4*x)*(1 - 6*x)*(1 - 12*x)*(1 - 24*x) = 1 - 47*x + 718*x^2 - 4416*x^3 + 10656*x^4 - 6912*x^5.

(End)

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6) on p. 248 (set t:=0).

FORMULA

Empirical: a(n) = 47*a(n-1) - 718*a(n-2) + 4416*a(n-3) - 10656*a(n-4) + 6912*a(n-5).

Empirical: a(n) = 24^n + 6^n - 3*12^n + 2*4^n - 1. R. J. Mathar, Jun 25 2012

Empirical g.f.: x*(1 + 164*x - 216*x^2 - 3744*x^3) / ((1 - x)*(1 - 4*x)*(1 - 6*x)*(1 - 12*x)*(1 - 24*x)). - Colin Barker, Jul 21 2018

EXAMPLE

Some solutions for n=3:

..1..3..0..2....3..1..2..0....1..2..0..3....1..2..0..3....1..2..0..3

..2..1..0..3....3..1..0..2....0..1..3..2....3..0..2..1....2..1..3..0

..2..3..1..0....1..2..0..3....3..2..0..1....1..2..0..3....1..3..2..0

CROSSREFS

Cf. A000041, A212850, A212852, A212853, A212854, A212855, A212856, A309951.

Sequence in context: A013529 A229519 A289983 * A069425 A276461 A093732

Adjacent sequences: A212848 A212849 A212850 * A212852 A212853 A212854

KEYWORD

nonn

AUTHOR

R. H. Hardin, May 28 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 03:47 EST 2022. Contains 358511 sequences. (Running on oeis4.)