This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212831 a(4*n) = 2*n, a(2*n+1) = 2*n+1, a(4*n+2) = 2*n+2. 6
 0, 1, 2, 3, 2, 5, 4, 7, 4, 9, 6, 11, 6, 13, 8, 15, 8, 17, 10, 19, 10, 21, 12, 23, 12, 25, 14, 27, 14, 29, 16, 31, 16, 33, 18, 35, 18, 37, 20, 39, 20, 41, 22, 43, 22, 45, 24, 47, 24, 49, 26, 51, 26, 53, 28, 55, 28, 57, 30, 59, 30, 61, 32, 63, 32, 65, 34, 67, 34, 69, 36, 71, 36, 73, 38, 75 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS First differences: (1, 1, 1, -1, 3, -1, 3, -3, 5,...) = (1, A186422). Second differences: (0, 0, -2, 4, -4, 4, -6, 8, ...)  = (-1)^(n+1) * A201629(n). Interleave the terms with even indices of the companion A215495 and this one to get (A215495(0), A212831(0), A215495(2), A212831(2),...) = (1, 0, 1, 2, 3, 2, 3, 4, 5, 4,...) = A106249, up to the initial term = A083219 = A083220/2. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,-1). FORMULA a(n) + A215495(n) = A043547(n). a(n) = -A214283(n)/A000108([n/2]). a(n+1) = (A186421(n)=0,1,2,1,4,...) + 1. a(2*n) = A052928(n+1). a(n+2) - a(n) = 2, 2, 0, 2. (period 4). a(n) = a(n-2) +a(n-4) -a(n-6); also holds for A215495(n). G.f.: x*(1+2*x+2*x^2+x^4) / ( (x^2+1)*(x-1)^2*(1+x)^2 ). - R. J. Mathar, Aug 21 2012 a(n) = (1/4)*((1 +(-1)^n)*(1 - (-1)^floor(n/2)) + (3 -(-1)^n)*n). - G. C. Greubel, Apr 25 2018 MATHEMATICA a[n_] := (1/4)*((-(1 + (-1)^n))*(-1 + (-1)^Floor[n/2]) - (-3 + (-1)^n)*n ); Table[a[n], {n, 0, 84}] (* Jean-François Alcover, Sep 18 2012 *) LinearRecurrence[{0, 1, 0, 1, 0, -1}, {0, 1, 2, 3, 2, 5}, 80] (* Harvey P. Dale, May 29 2016 *) PROG (PARI) A212831(n)=if(bittest(n, 0), n, n\2+bittest(n, 1)) \\ M. F. Hasler, Oct 21 2012 (PARI) for(n=0, 50, print1((1/4)*((1 +(-1)^n)*(1 - (-1)^floor(n/2)) + (3 -(-1)^n)*n), ", ")) \\ G. C. Greubel, Apr 25 2018 (MAGMA) [(1/4)*((1 +(-1)^n)*(1 - (-1)^Floor(n/2)) + (3 -(-1)^n)*n): n in [0..50]]; // G. C. Greubel, Apr 25 2018 CROSSREFS Cf. A214282, A129756. Sequence in context: A182816 A195637 A181861 * A072969 A139712 A175856 Adjacent sequences:  A212828 A212829 A212830 * A212832 A212833 A212834 KEYWORD nonn,easy AUTHOR Paul Curtz, Aug 14 2012 EXTENSIONS Corrected and edited by M. F. Hasler, Oct 21 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 09:05 EST 2019. Contains 329995 sequences. (Running on oeis4.)