login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212831 a(4*n) = 2*n, a(2*n+1) = 2*n+1, a(4*n+2) = 2*n+2. 6
0, 1, 2, 3, 2, 5, 4, 7, 4, 9, 6, 11, 6, 13, 8, 15, 8, 17, 10, 19, 10, 21, 12, 23, 12, 25, 14, 27, 14, 29, 16, 31, 16, 33, 18, 35, 18, 37, 20, 39, 20, 41, 22, 43, 22, 45, 24, 47, 24, 49, 26, 51, 26, 53, 28, 55, 28, 57, 30, 59, 30, 61, 32, 63, 32, 65, 34, 67, 34, 69, 36, 71, 36, 73, 38, 75 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

First differences: (1, 1, 1, -1, 3, -1, 3, -3, 5,...) = (1, A186422).

Second differences: (0, 0, -2, 4, -4, 4, -6, 8, ...)  = (-1)^(n+1) * A201629(n).

Interleave the terms with even indices of the companion A215495 and this one to get (A215495(0), A212831(0), A215495(2), A212831(2),...) = (1, 0, 1, 2, 3, 2, 3, 4, 5, 4,...) = A106249, up to the initial term = A083219 = A083220/2.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,-1).

FORMULA

a(n) + A215495(n) = A043547(n).

a(n) = -A214283(n)/A000108([n/2]).

a(n+1) = (A186421(n)=0,1,2,1,4,...) + 1.

a(2*n) = A052928(n+1).

a(n+2) - a(n) = 2, 2, 0, 2. (period 4).

a(n) = a(n-2) +a(n-4) -a(n-6); also holds for A215495(n).

G.f.: x*(1+2*x+2*x^2+x^4) / ( (x^2+1)*(x-1)^2*(1+x)^2 ). - R. J. Mathar, Aug 21 2012

a(n) = (1/4)*((1 +(-1)^n)*(1 - (-1)^floor(n/2)) + (3 -(-1)^n)*n). - G. C. Greubel, Apr 25 2018

MATHEMATICA

a[n_] := (1/4)*((-(1 + (-1)^n))*(-1 + (-1)^Floor[n/2]) - (-3 + (-1)^n)*n ); Table[a[n], {n, 0, 84}] (* Jean-Fran├žois Alcover, Sep 18 2012 *)

LinearRecurrence[{0, 1, 0, 1, 0, -1}, {0, 1, 2, 3, 2, 5}, 80] (* Harvey P. Dale, May 29 2016 *)

PROG

(PARI) A212831(n)=if(bittest(n, 0), n, n\2+bittest(n, 1)) \\ M. F. Hasler, Oct 21 2012

(PARI) for(n=0, 50, print1((1/4)*((1 +(-1)^n)*(1 - (-1)^floor(n/2)) + (3 -(-1)^n)*n), ", ")) \\ G. C. Greubel, Apr 25 2018

(MAGMA) [(1/4)*((1 +(-1)^n)*(1 - (-1)^Floor(n/2)) + (3 -(-1)^n)*n): n in [0..50]]; // G. C. Greubel, Apr 25 2018

CROSSREFS

Cf. A214282, A129756.

Sequence in context: A182816 A195637 A181861 * A072969 A139712 A175856

Adjacent sequences:  A212828 A212829 A212830 * A212832 A212833 A212834

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Aug 14 2012

EXTENSIONS

Corrected and edited by M. F. Hasler, Oct 21 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 09:05 EST 2019. Contains 329995 sequences. (Running on oeis4.)