login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212822 Triangle of coefficients of polynomials concerning Newman-like phenomenon of multiples of b+1 in even base b in interval [0,b^n) (see comment). 0
1, 2, -1, 1, 3, -1, 2, 6, -8, 3, 2, 10, 10, -10, 3, 4, 20, 10, -50, 46, -15, 17, 119, 245, 35, -217, 161, -45, 34, 238, 406, -350, -644, 1372, -1056, 315, 62, 558, 1722, 1638, -1092, -1008, 1828, -1188, 315, 124, 1116, 3138, 1134, -5838, 1134, 9452, -14724, 10134, -2835 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

In 1969, D. J. Newman (see the reference) proved that difference between numbers of multiples of 3 with even and odd binary digit sums in interval [0,x] is always positive. This fact now is known as Newman phenomenon.

Consider difference between numbers of multiples of b+1 with even and odd digit sums in even base b in interval [0, b^n). It is a polynomial in b P_n(b) of degree n-1 and multiple of b, if n is even, and n-2, if n is odd, such that all polynomials Q_n(b):=A156769(n/2)*P_n(b)/b, if n is even, and Q_n(b):=A156769((n-1)/2)*P_n(b), if n is odd, presumably have integer coefficients and are of degree n-2. The sequence is triangle of coefficients of polynomials Q_n(b).

The r-th row contains r-1 entries.

Since, evidently, P_n(1)=1, then the row sums form sequence A156769 repeated.

LINKS

Table of n, a(n) for n=2..56.

D. J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969) 719-721.

Vladimir Shevelev, On monotonic strengthening of Newman-like phenomenon on (2m+1)-multiples in base 2m, arXiv:0710.3177v2 [math.NT], 2007.

FORMULA

If n>=2 is even, then P_(n+1)(b) = (-1)^((n-2)/2)*(C(b+1,n)-C(b-1,n))-sum{i=2,4,...,n-2}(-1)^((n+i)/2)*C(b+1, n-i)*P_(i+1)(b), where P_n(b)=b*Q_n(b)/A156769(n/2);

if n>=3 is odd, then P_(n+1)(b) = (-1)^((n-1)/2)*(C(b,n)-b*C(b+1,n-1))+sum{i=3,5,...,n-2}(-1)^((n+i)/2)*C(b+1, n-i)*P_(i+1)(b), where

P_n(b) = Q_n(b)/A156769((n-1)/2).

P_n(b) = 2/(b+1)*Sum_{j=1..b/2}(tan(j*Pi/(b+1)))^n, if n is even, and

P_n(b) = 2/(b+1)*Sum_{j=1..b/2}(tan(j*Pi/(b+1)))^n*sin(j*Pi/(b+1)), if n is odd.

EXAMPLE

Triangle begins (r is the number of row or the number of polynomial; coefficients of b^k, k=r-2-i, i=0,1,..., r-2)

r/i.|..0......1......2.....3.....4......5......6.....7

======================================================

.2..|..1

.3..|..2.....-1

.4..|..1......3.....-1

.5..|..2......6.....-8.....3

.6..|..2.....10.....10...-10.....3

.7..|..4.....20.....10...-50....46....-15

.8..|.17....119....245....35..-217....161....-45

.9..|.34....238....406..-350..-644...1372..-1056....315

For example, if r=4, the polynomial

P_4(b)=b*(b^2+3*b-1)/A156769(4/2)=b/3*(b^2+3*b-1) (b==0 mod 2)

gives difference between multiples of b+1 with even and odd digit sums in  base b in interval [0, b^4). Note also that P_2(b)=b. Therefore, setting in the formula n=r=3, again for P_4(b) we have P_4(b)=b*C(b+1,2)-C(b,3)=b/3*(b^2+3*b-1).

MATHEMATICA

A156769[n_] := Denominator[(2^(2*n-2)/Factorial[2*n-1])]; poly[1, b_] := 1; poly[2, b_] := b; poly[n_, b_] :=  poly[n, b] = If[OddQ[n], (-1)^((n - 1)/2) (FunctionExpand[Binomial[b - 1, n - 1]] - Sum[(-1)^(k/2) FunctionExpand[Binomial[b + 1, n - k - 1]] poly[k + 1, b], {k, 0, n - 2, 2}]), (-1)^((n - 2)/2) (FunctionExpand[Binomial[b, n - 1]] - Sum[(-1)^((k - 1)/2) FunctionExpand[Binomial[b + 1, n - k - 1]] poly[k + 1, b], {k, 1, n - 2, 2}])]; Table[If[EvenQ[z], Most[Reverse[CoefficientList[poly[z, b] A156769[z/2], b]]], Reverse[CoefficientList[poly[z, b] A156769[(z - 1)/2], b]]], {z, 2, 12}]

CROSSREFS

Cf. A156769, A038754, A084990, A091042, A212500, A212592, A212593, A212594, A212668, A212669, A212670, A212705, A212706.

Sequence in context: A187207 A050117 A241187 * A309041 A249143 A121560

Adjacent sequences:  A212819 A212820 A212821 * A212823 A212824 A212825

KEYWORD

sign,base,tabl

AUTHOR

Vladimir Shevelev and Peter J. C. Moses, May 28 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 02:58 EST 2019. Contains 329383 sequences. (Running on oeis4.)