OFFSET
2,2
COMMENTS
In 1969, D. J. Newman (see the reference) proved that difference between numbers of multiples of 3 with even and odd binary digit sums in interval [0,x] is always positive. This fact now is known as Newman phenomenon.
Consider difference between numbers of multiples of b+1 with even and odd digit sums in even base b in interval [0, b^n). It is a polynomial in b P_n(b) of degree n-1 and multiple of b, if n is even, and n-2, if n is odd, such that all polynomials Q_n(b):=A156769(n/2)*P_n(b)/b, if n is even, and Q_n(b):=A156769((n-1)/2)*P_n(b), if n is odd, presumably have integer coefficients and are of degree n-2. The sequence is triangle of coefficients of polynomials Q_n(b).
The r-th row contains r-1 entries.
Since, evidently, P_n(1)=1, then the row sums form sequence A156769 repeated.
LINKS
D. J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969) 719-721.
Vladimir Shevelev, On monotonic strengthening of Newman-like phenomenon on (2m+1)-multiples in base 2m, arXiv:0710.3177v2 [math.NT], 2007.
FORMULA
If n>=2 is even, then P_(n+1)(b) = (-1)^((n-2)/2)*(C(b+1,n)-C(b-1,n))-sum{i=2,4,...,n-2}(-1)^((n+i)/2)*C(b+1, n-i)*P_(i+1)(b), where P_n(b)=b*Q_n(b)/A156769(n/2);
if n>=3 is odd, then P_(n+1)(b) = (-1)^((n-1)/2)*(C(b,n)-b*C(b+1,n-1))+sum{i=3,5,...,n-2}(-1)^((n+i)/2)*C(b+1, n-i)*P_(i+1)(b), where
P_n(b) = Q_n(b)/A156769((n-1)/2).
P_n(b) = 2/(b+1)*Sum_{j=1..b/2}(tan(j*Pi/(b+1)))^n, if n is even, and
P_n(b) = 2/(b+1)*Sum_{j=1..b/2}(tan(j*Pi/(b+1)))^n*sin(j*Pi/(b+1)), if n is odd.
EXAMPLE
Triangle begins (r is the number of row or the number of polynomial; coefficients of b^k, k=r-2-i, i=0,1,..., r-2)
r/i.|..0......1......2.....3.....4......5......6.....7
======================================================
.2..|..1
.3..|..2.....-1
.4..|..1......3.....-1
.5..|..2......6.....-8.....3
.6..|..2.....10.....10...-10.....3
.7..|..4.....20.....10...-50....46....-15
.8..|.17....119....245....35..-217....161....-45
.9..|.34....238....406..-350..-644...1372..-1056....315
For example, if r=4, the polynomial
P_4(b)=b*(b^2+3*b-1)/A156769(4/2)=b/3*(b^2+3*b-1) (b==0 mod 2)
gives difference between multiples of b+1 with even and odd digit sums in base b in interval [0, b^4). Note also that P_2(b)=b. Therefore, setting in the formula n=r=3, again for P_4(b) we have P_4(b)=b*C(b+1,2)-C(b,3)=b/3*(b^2+3*b-1).
MATHEMATICA
A156769[n_] := Denominator[(2^(2*n-2)/Factorial[2*n-1])]; poly[1, b_] := 1; poly[2, b_] := b; poly[n_, b_] := poly[n, b] = If[OddQ[n], (-1)^((n - 1)/2) (FunctionExpand[Binomial[b - 1, n - 1]] - Sum[(-1)^(k/2) FunctionExpand[Binomial[b + 1, n - k - 1]] poly[k + 1, b], {k, 0, n - 2, 2}]), (-1)^((n - 2)/2) (FunctionExpand[Binomial[b, n - 1]] - Sum[(-1)^((k - 1)/2) FunctionExpand[Binomial[b + 1, n - k - 1]] poly[k + 1, b], {k, 1, n - 2, 2}])]; Table[If[EvenQ[z], Most[Reverse[CoefficientList[poly[z, b] A156769[z/2], b]]], Reverse[CoefficientList[poly[z, b] A156769[(z - 1)/2], b]]], {z, 2, 12}]
CROSSREFS
KEYWORD
AUTHOR
Vladimir Shevelev and Peter J. C. Moses, May 28 2012
STATUS
approved