login
A212818
Numbers up to 10^n with an even number of not necessarily distinct prime factors, or positive Liouville function.
1
1, 5, 49, 493, 4953, 49856, 499735, 4999579, 49998058, 499987392, 4999941987, 49999828888, 499999738687, 4999999516711
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Liouville Function
FORMULA
a(n) = A011557(n) - A212819(n).
a(n) = (10^n)/2 + A090410(n)/2. - Donovan Johnson, May 30 2012
a(n) = A055037(10^n). - Ray Chandler, May 30 2012
EXAMPLE
a(1) = 5 since up to 10 there are the five numbers 1, 4, 6, 9, 10 with an even number of prime factors, or positive Liouville function.
MAPLE
zg:=0: zu:=0: G:=[]: U:=[]: k:=0:
for i from 1 to 10^8 do if numtheory[bigomega](i) mod 2 = 0 then zg:=zg+1: else zu:=zu+1: fi: if i=10^k then G:=[op(G), zg]: U:=[op(U), zu]: k:=k+1: fi: od:
print(G);
MATHEMATICA
Table[Length[Select[Range[10^n], EvenQ[PrimeOmega[#]] &]], {n, 0, 5}] (* Alonso del Arte, May 28 2012 *)
Table[Count[LiouvilleLambda[Range[10^n]], 1], {n, 0, 5}] (* Ray Chandler, May 30 2012 *)
CROSSREFS
Cf. A055037 (goes up to n rather than 10^n), A002819, A008836, A028260, A065043, A090410.
Sequence in context: A096596 A001079 A146311 * A195206 A081474 A370097
KEYWORD
nonn
AUTHOR
Martin Renner, May 28 2012
EXTENSIONS
a(9)-a(13) from Donovan Johnson, May 30 2012
STATUS
approved