login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212806 Number of n X n matrices in which each row is a permutation of [1..n] and which contain no column rises. 4
1, 3, 163, 271375, 21855093751, 128645361626874561, 78785944892341703819175577, 6795588328283070704898044776213094655, 107414633522643325764587104395687638119674465944431, 392471529081605251407320880492124164530148025908765037878553312273, 407934916447631403509359040563002566177814886353044858592046202746464825839911293037 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A column rise in a matrix M=(m_{i,j}) is a value of j such that m_{i,j} < m_{i,j+1} for all i = 1..n

REFERENCES

Abramson, Morton; Promislow, David. Enumeration of arrays by column rises. J. Combinatorial Theory Ser. A 24 (1978), no. 2, 247--250. MR0469773 (57 #9554). [their a(5) is wrong, see A212845]

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..18

FORMULA

Abramson and Promislow give a g.f. for R(m,n,t), the number of m X n matrices in which each row is a permutation of [1..n] and which contain exactly t column rises:

1 + Sum_{n=1..oo} Sum_{t=0..n-1} R(m,n,t) y^t x^n/(n!)^m = (y-1)/(y-f(x(y-1)))

where f(x) = Sum_{i=0..oo} x^i/(i!)^m.

EXAMPLE

For n=2 the three matrices are [12/21], [21/12], [21/21] (but not [12/12]).

MAPLE

A212806 := proc(n) sum(z^k/k!^n, k=0..infinity);

series(%^x, z=0, n+1): n!^n*coeff(%, z, n); add(abs(coeff(%, x, k)), k=0..n) end:

seq(A212806(n), n=1..11); # Peter Luschny, May 27 2017

CROSSREFS

A212805 is a lower bound.

Diagonal of A212855.

Sequence in context: A157586 A042439 A212845 * A030258 A154737 A285488

Adjacent sequences:  A212803 A212804 A212805 * A212807 A212808 A212809

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, May 27 2012

EXTENSIONS

Corrected by R. H. Hardin, May 28 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 17 15:18 EDT 2017. Contains 290635 sequences.